ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:19.09KB ,
资源ID:5579780      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5579780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(新版磷酸铁锂电池回收再利用工艺磷酸铁锂电池生产流程.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

新版磷酸铁锂电池回收再利用工艺磷酸铁锂电池生产流程.docx

1、新版磷酸铁锂电池回收再利用工艺磷酸铁锂电池生产流程本技术涉及一种回收磷酸铁锂电池的方法,属于电池回收技术领域。本技术解决的技术问题a是提供一种耗水量较少的回收磷酸铁锂电池的方法。该方法包括如下步骤:、电池拆分,bc得到正极粉末;、将正极粉末与金属盐粉末混合,球磨,过筛,取筛下物;、筛下物在含55060024hd氧气氛中焙烧,焙烧温度为,焙烧时间为,得焙烧后产物;、浸出:焙烧后产物粉碎,用水浸出,过滤,所得滤液即为沉锂母液。本技术采用干球磨技术,避免湿法产生更多废水,仅在最后用水浸出锂,此步骤的过滤水可以沉锂后回用,其耗水量少,且原H2O2O3料来源广泛且廉价,无需加入和这些氧化剂,加入少量的铁

2、盐和锰盐,即可获得99以上的锂浸出效率,锂回收率高。技术要求1.回收磷酸铁锂电池的方法,其特征在于,包括如下步骤:a、电池拆分:拆解磷酸铁锂电池,分离正极、负极、隔膜和铁壳,得到正极粉末;ba、球磨:将步骤得到的正极粉末与金属盐粉末混合,干法球磨,过筛,取筛下物;其中,所述金属盐为醋酸铁、硝酸铁、硫酸锰、一水合硫酸锰和七水合硫酸铁中的至少一种;cb5506002、焙烧:步骤得到的筛下物在含氧气氛中焙烧,焙烧温度为,焙烧时间为4h,得焙烧后产物;dc、浸出:将步骤得到的焙烧后产物粉碎,用水浸出,过滤,所得滤液即为沉锂母液。2.1b根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,所述

3、金属盐为醋酸铁、硝酸铁和七水合硫酸铁中的至少一种。3.1b根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,金属盐粉末中1:11.5:1的金属元素与正极粉末中的铁元素的摩尔比为。4.1b根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,过筛采用的筛200子孔径目。5.1b根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,球料质量比1.5:12:113h,球磨时间。6.1c根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,含氧气氛为氧气或空气。7.1d35根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,浸出时间为120min。8.1d

4、根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,浸出用水为去离子水。9.1d根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,浸出采用的固1:31:5液质量比。10.1d根据权利要求所述的回收磷酸铁锂电池的方法,其特征在于:步骤中,沉锂母液沉d锂后产生的滤液返回步骤用作浸出用水。技术说明书一种回收磷酸铁锂电池的方法技术领域本技术涉及一种回收磷酸铁锂电池的方法,属于电池回收技术领域。背景技术3C近年来,随着锂离子电池在电动汽车、数码产品等领域的应用快速增长,全球锂离子2015电池的总体产量和市场规模得到快速提升。年,全球锂离子电池总体产量达到100.75GWh39.45

5、2005201556,同比增长。年至年,全球锂电池市场规模从亿美元增长22114.72020363到亿美元,年复合增长率高达;预计年全球锂电池市场规模将达到亿美元,将继续维持在较高水平。52019聚焦磷酸铁锂电池,按照磷酸铁锂电池报废期年测算,年开始动力电池将进入规模202024.7GWh2019-2025性报废期,预计到年动力电池报废装机量将达到。预计年动力电6002019-202550池回收合计市场空间有望超过亿元,年均复合增速有望达到。Fe3+LiFePO4文献无酸、高效且选择性地利用从废旧电池中回收锂的工艺(YangDai,Theoretical-molar Fe3+recoverin

6、g lithium from spent LiFePO4 batteries:anacid-free,efficient,and selective process.Journal of Hazardous Materials,2020,396,12207)公开一种高效浸出磷酸铁锂电池正极活性物质的方法。文中用硫酸铁与磷酸铁锂粉末液相混合,此Fe3+Fe2+过程中,与磷酸铁锂中的发生置换反应。之后,直接过滤获得磷酸铁渣。向滤NaOHO2Fe(OH)3液中加入和,获得,锂盐以硫酸锂的形式存在于溶液中。用硫酸溶解氢氧化铁获得硫酸铁,硫酸铁可重复利用。CN106910889A1)专利介绍了一种磷酸铁

7、锂电池正极活性物质的再生方法:将废旧磷酸铁2)锂电池经盐水放电后,拆解出有机溶剂、卷芯和外壳材料;卷芯经粉碎、焙烧等步骤后,振动筛选分离出活性物质、铜箔和铝箔。用石灰水吸收含氟废气,磁选法分离铜箔3)和铝箔,活性物质利用硫酸浸出,分离得到浸出液和碳渣;浸出液采用加入铁粉还原的Cu2+Fe3+Fe2+方法将其中的还原成单质铜,同时将还原成,过滤除掉铜及多余铁渣后、pH碱液沉淀除铝,过滤后在再往滤液中补充磷源,并通过加碱液调节值,生成粗磷酸铁锂沉淀,最后经烧结得到电池级磷酸铁锂。Fe2+Li+可见,已有技术中,主要是湿法工艺,以硫酸铁溶液为溶剂,置换出和。该过程为典型的湿法过程,通过固液相的传质作

8、用,达到分离的目的。锂的浸出效率最高为97.07,浸出效率的确很高。但该过程消耗大量的水资源。CN111370800AS1专利介绍了一种废旧磷酸铁锂正极材料的回收方法,包括以下步骤:、取废旧磷酸铁锂正极材料经预处理得到磷酸铁锂粉末,将磷酸铁锂粉末与固体助磨剂混S2合后进行球磨得到混合粉末;、取所述混合粉末经水浸出后,得到含有有价金属离子的浸出液;其中,所述助磨剂为有机酸且所述有机酸中的酸根离子能与铁和锂分别形成可溶性络合物。本技术方案可以较好地解决现有技术中所存在的酸碱用量过多、含盐废水产量过大、易产生二次污染等问题。该方法的核心是利用酸性物质腐蚀磷酸亚铁锂形97.1成溶于水的络合物,有机酸的

9、消耗较大成本较高,且其锂的回收率为,有待进一步提高。技术内容针对以上缺陷,本技术解决的技术问题是提供一种低成本的回收磷酸铁锂电池的方法。本技术回收磷酸铁锂电池的方法,包括如下步骤:a、电池拆分:拆解磷酸铁锂电池,分离正极、负极、隔膜和铁壳,得到正极粉末;ba、球磨:将步骤得到的正极粉末与金属盐粉末混合,干法球磨,过筛,取筛下物;其中,所述金属盐为醋酸铁、硝酸铁、硫酸锰、一水合硫酸锰和七水合硫酸铁中的至少一种;cb5506002、焙烧:步骤得到的筛下物在含氧气氛中焙烧,焙烧温度为,焙烧时间为4h,得焙烧后产物;dc、浸出:将步骤得到的焙烧后产物粉碎,用水浸出,过滤,所得滤液即为沉锂母液。b在本技

10、术的一个实施方式中,步骤中,所述金属盐为醋酸铁、硝酸铁和七水合硫酸铁中的至少一种。在本技术的一个实施方式中,金属盐粉末中的金属元素与正极粉末中的铁元素的摩尔比1:11.5:1为。b200在本技术的一个实施方式中,步骤中,过筛采用的筛子孔径目。1.5:12:113h在本技术的一个实施方式中,球磨的球料质量比为,球磨时间。c在本技术的一个实施方式中,步骤中,所述含氧气氛为氧气或空气。d35120min在本技术的一个实施方式中,步骤中,浸出的时间为。d在本技术的一个实施例中,步骤中,浸出用水为去离子水。d1:31:5在本技术的一个实施方式中,步骤中,浸出的采用的固液质量比。d在本技术的一个实施方式中

11、,沉锂母液沉锂后产生的滤液返回步骤用作浸出用水。与现有技术相比,本技术具有如下有益效果:-(本技术方法,将固固反应和湿法提取相结合,采用干球磨技术,避免湿法溶解、搅拌、)过滤产生更多废水,极大程度地降低了水的用量,减少污水排放,且浸出用水可以循环使用,节约成本。该方法采用醋酸铁、硝酸铁、硫酸锰、一水合硫酸锰、七水合硫酸铁H2O2O3等金属盐粉末,原料来源广泛且廉价,并引入焙烧过程,无需加入和这些氧化99剂,加入少量的铁盐和锰盐,即可获得以上的锂浸出效率,锂回收率高。具体实施方式本技术回收磷酸铁锂电池的方法,包括如下步骤:a、电池拆分:拆解磷酸铁锂电池,分离正极、负极、隔膜和铁壳,得到正极粉末;

12、ba、球磨:将步骤得到的正极粉末与金属盐粉末混合,球磨,过筛,取筛下物;其中,所述金属盐为醋酸铁、硝酸铁、硫酸锰、一水合硫酸锰、七水合硫酸铁中的至少一种;cb5506002、焙烧:步骤得到的筛下物在含氧气氛中焙烧,焙烧温度为,焙烧时间为4h,得焙烧后产物;dc、浸出:将步骤得到的焙烧后产物粉碎,用水浸出,过滤,所得滤液即为沉锂母液。()本技术采用干球磨技术,避免湿法溶解、搅拌、过滤产生更多废水,仅在最后用水浸出锂,此步骤的过滤水可以沉锂后回用。该方法采用醋酸铁、硝酸铁、硫酸锰、一水合硫酸锰、七水合硫酸铁等金属盐粉末,原料来源广泛且廉价,并引入焙烧过程,无需加入H2O2O3和这些氧化剂,加入少量

13、的铁盐和锰盐,即可获得较高的锂浸出效率,锂回收率90高达以上。a步骤为拆解电池的过程,可以采用本领域常规方法,将电池拆解后,分离正极、负极、隔膜和铁壳,通过破碎和筛分,得到正极粉末。b步骤主要为球磨步骤,在正极粉末中加入金属盐一起进行球磨。本技术中的金属盐与传统助磨剂有明显差异。传统助磨剂是提高研磨效率的添加剂,一般为玻璃珠,石英砂等,以期提高粉磨效率。本技术中的金属盐是作为反应物参与体系Fe3+Mn2+Fe2+的反应,金属盐中的高价阳离子,如、可以取代磷酸亚铁锂中的,从而瓦Li+Fe2+解高密度的橄榄石结构,释放出和。球磨过程保证两种反应物混合均匀,颗粒之间的摩擦接触促进了反应的进行。在本技

14、术的一个优选实施方式中,所述金属盐为醋酸铁、硝酸铁、七水合硫酸铁中的至99少一种,采用铁盐,可以进一步提高锂的回收率,获得以上的锂回收率。在本技术的一个实施方式中,金属盐粉末中的金属元素与正极粉末中的铁元素的摩尔比1:11.5:1为。b200200在本技术的一个实施方式中,步骤中,过筛采用的筛子孔径目。孔径目是指孔200200300400径在目筛以下的,比如目筛、目筛、目筛等。筛下物进行下一个处理步骤,而筛上物质由于孔径较大,可以返回球磨步骤进一步磨细后,再过筛。1.5:1进一步的,为了提高球磨效果,在本技术的一个实施方式中,球磨的球料质量比为2:113h,球磨时间。球磨后进行焙烧。焙烧在含氧

15、气氛下进行,通过焙烧,可以促进固相反应发生,避免反应不完全。同时,可以将二价铁转化为三价铁。在本技术的一个实施方式中,所述含氧气氛为氧气或空气。进一步的为了节约成本,含氧气氛为空气。由于焙烧可能会导致产物结块,因此需要在浸出前进行粉碎,本领域常用的粉碎方法均可适用于本技术,比如研磨、球磨等,仅需将焙烧后产物粉碎,达到便于浸出的目的即可。d步骤将焙烧后的产物浸出,直接用水,即可将锂离子浸出,得到硝酸锂或硫酸锂溶液。1:31:5在本技术的一个实施方式中,固液质量比。35120min在本技术的一个实施方式中,浸出的时间为。d为了减少溶液中的杂质含量,在本技术的一个实施例中,步骤中,浸出用水为去离子水

16、。沉锂母液可以采用本领域常规方法,从中得到氢氧化锂或者碳酸锂或者其他锂盐固体产d品。沉锂母液中的锂变为沉淀取出后,所得溶液可以返回步骤,用作浸出用水,这样,水资源可以循环使用,极大程度地降低回收成本。下面结合实施例对本技术的具体实施方式做进一步的描述,并不因此将本技术限制在所述的实施例范围之中。本技术锂回收率的计算方法为:y(C1*V1/x1*m1)*100y锂回收率,x1wt.筛下物中锂的质量分数,m1g筛下物质量,C1g/L沉锂母液中锂的浓度,V1L沉锂母液体积,ICP()以上锂含量测定方法均采用电感耦合等离子体发射光谱仪法测定。液体相经稀释,直接测定锂含量。固体相即筛下物用王水溶解,滤去

17、酸不溶物,测定滤液中锂含量,再换算为固体中的锂含量。1实施例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将硝酸铁2:12h(30min30min)与正极粉末混合球磨,球料比,球磨时间球磨,停机。其中,硝酸铁与1:1200粉末中铁的摩尔比为。混合粉末过目筛,取筛下物。筛上物再返回上步重新球磨;6002h筛下物在空气气氛下焙烧,焙烧温度,焙烧。粉碎焙烧物,用去离子水浸出,固1:399.1液比。过滤混合浆料,滤液作为沉锂母液。经分析测试,此条件下,的锂可以99.1被有效提取回收,即锂回收率为。2实施例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将醋酸铁

18、3:22h(30min30min)与正极粉末混合球磨,球料比,球磨时间球磨,停机。其中,醋酸铁与1:1200粉末中铁的摩尔比为。混合粉末过目筛,取筛下物。筛上物再返回上步重新球磨;5503h筛下物在空气气氛下焙烧,焙烧温度,焙烧。粉碎焙烧物,用去离子水浸出,固1:4液比。过滤混合浆料,滤液作为沉锂母液。经分析测试,此条件下,锂回收率为99.5。3实施例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将七水合2:13h(30min30min)硫酸铁与正极粉末混合球磨,球料比,球磨时间球磨,停机。其中,七1:1200水合硫酸铁与粉末中铁的摩尔比为。混合粉末过目筛,取筛下物。筛上

19、物再返回上5504h步重新球磨;筛下物在空气气氛下焙烧,焙烧温度,焙烧。粉碎焙烧物,用去离1:3.5子水浸出,固液比。过滤混合浆料,滤液作为沉锂母液。经分析测试,此条件下,99.5锂回收率为。4实施例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将硫酸锰3:24h(30min30min)与正极粉末混合球磨,球料比,球磨时间球磨,停机。其中,硫酸锰与1.5:1200粉末中铁的摩尔比为。混合粉末过目筛,取筛下物。筛上物再返回上步重新球5503h磨;筛下物在空气气氛下焙烧,焙烧温度,焙烧。粉碎焙烧物,用去离子水浸1:4出,固液比。过滤混合浆料,滤液作为沉锂母液。经分析测试,此条

20、件下,锂回收率90.1为。5实施例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将一水合3:24h(30min30min)硫酸锰与正极粉末混合球磨,球料比,球磨时间球磨,停机。其中,一1.5:1200水合硫酸锰与粉末中铁的摩尔比为。混合粉末过目筛,取筛下物。筛上物再返回5503h上步重新球磨;筛下物在空气气氛下焙烧,焙烧温度,焙烧。粉碎焙烧物,用去1:4离子水浸出,固液比。过滤混合浆料,滤液作为沉锂母液。经分析测试,此条件下,95.0锂回收率为。1对比例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将正极粉3:24h(30min30min)200末球

21、磨,球料比,球磨时间球磨,停机。混合粉末过目筛,取筛下5503h物。筛上物再返回上步重新球磨;筛下物在空气气氛下焙烧,焙烧温度,焙烧。1:4粉碎焙烧物,用去离子水浸出,固液比。过滤混合浆料,滤液作为沉锂母液。经分析5测试,此条件下,锂回收率为。2对比例手工拆解磷酸铁锂电池,分离正极、负极、隔膜、铁壳,获取电池正极粉末。将一水合3:24h(30min30min)硫酸锰与正极粉末混合球磨,球料比,球磨时间球磨,停机。其中,一1.5:1200水合硫酸锰与粉末中铁的摩尔比为。混合粉末过目筛,取筛下物。筛上物再返回1:4上步重新球磨;筛下物用去离子水浸出,固液比。过滤混合浆料,滤液作为沉锂母65.2液。经分析测试,此条件下,锂回收率为。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1