ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:119.53KB ,
资源ID:5525535      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5525535.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(混合器温度控制系统的分析与仿真.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

混合器温度控制系统的分析与仿真.docx

1、混合器温度控制系统的分析与仿真滨江学院自动控制原理综合实验题 目 混合器温度控制系统的分析与仿真 院 系 滨江学院 专 业 信息工程(系统工程方向) 学生姓名 章玲玲 学 号 20092325042 指导教师 范志勇 二一二 年 6 月 6 日1系统介绍下图是混合器出口温度调节系统示意图,混合器的容积V=500L,物料A和物料B均为液体,流入容器中混合加热,用蒸汽在混合器的夹套加热中释放热量,并将热量传给被加热流体,夹套内的蒸气压力为:98.1kPa。生产要求此混合器物料出口温度保持在80,并已知物料的流量为Fa=20kg/min,入口温度为20保持不变,物料B的流量为80 kg/min,入口

2、温度为f=2010即在1030之间变化,物料A和B的密度=1kg/L,比热容C=4.18Kj/kg。安装在混合器出口处的测温元件为热电阻,经过温度变送器(测温范围为100200)后,将温度信号送到调节器中,与给定信号X=80进行比较,并根据比较后的偏差以一定的调节规律输出驱动调节阀,使加热蒸汽流量q作相应的变化,以保证生产的需要。2物理模型图 Y A+B 蒸汽q 混合器 冷凝液 A物料 FA(20。C) B物料 FB(2010。C)图1 系统原理图3. 系统分析3.1 混合器温度控制系统的结构框图 f Y -图2 系统结构框图3.2各个环节的函数推导1,调节对象(混合器)的动态方程式假设混合器

3、和夹套之间的器壁较薄,传热性能良好,同时夹套外的保温层绝热性能较好,热量散失可以忽略不计,根据动态能量守恒定律,则混合器中物料蓄存热量的变化率应等于每分钟蒸汽冷凝释放的热量减去每分钟流出混合器物料吸收的热量。它的数学表达式是C V= q-C Fa(y-u0)+C Fb(y-f),其中各个字母所代表的含义如下:式中C物料A和B的比热,C=4.18KJ/kg;V混合器容积,V=500L;物料A和B的密度;=1kg/L;y混合器物料出口温度,即被调参数,;t时间,min;蒸气在夹套中98.1kPa压力下,冷凝释放的气化潜热,=2259.4kJ/kg;q蒸气流量,kg/min;Fa , Fb物料A和B

4、的流量;u物料A的入口温度,u=20;f物料B的入口温度,f=2010。上面的方程是混合器的原始微分方程式,由于系统是从平衡状态开始变化的,由此采用增量方程表示,即y=y-y0, f=f-f0,其余类推。若Fa、Fb、u不变,上市的增量形式为:C V(dy)/dt=q-C Fay +C Fb(y-f)将方程两端同时除以C(Fa+Fb)可得到下式:(dy)/dt+y=q+f 简化为T0(dy)/dt+y=K0q+Kff,其中,T0=5min,K0=5.4。传递函数为G0(s)=,其中To=5min为对象的时间常数;KO为对象控制通道的时间常数,取值为5.4。2,调节阀的传递函数推导过程:气动薄膜

5、调节阀的动态特性方程为Tv+q= KvP ;假设调节阀的膜头尺寸较小,从调节器到调节阀的传送管线又较短,所以阀的时间常数很小,且远小于调节对象和测量元件的时间常数,因此可忽略不计,故可认为该环节是一个比例放大环节,经过计算可求得Kv=0.3,其中Kv是调节阀的放大系数;3,测量、变送单元的传递函数推导过程为:变送器的动态特性为放大环节,热电阻的动态特性与热电偶相同,则测量便送单元的传递函数克表示为:Hm(s) =,其中式子中Tm代表热电阻的时间常数,取之为2.5min.实际上由于与对象的时间常数相比,测量变送环节的时间常数可以不计。4,调节器的传递函数为Gc(s)=Kc1+(Kd-1) ,其中

6、Ti取5分钟(一般可取310分钟),Td取2分钟(一般可取0.53分钟),Kd取6,比例度取40%(一般可取20%60%),若采用的测量范围(量程)为50100,输出气压范围为20100kPa的气动温度变送器,根据比例度的定义,可计算出调节器的放大倍数是:Kc=1/40%*80/50=4kPa/5,控制系统的闭环传递函数为:利用控制系统方框图可求得控制系统的闭环传递函数:=KcKvK0/(T0TmS2)+(T0+Tm)S+(1+KcKvK0)4.系统稳定性分析4.1 代入参数值系统的闭环传函:G(s)=1.307/(S2+0.6S+1.117);系统的开环传函:H(s)=1.307/(S2+0

7、.6S-0.19);4.2 根轨迹用如下程序将传递函数在MATLAB中表示出来:num=1.307den=1,0.6,- 0.19sys=tf(num,den)用MATLAB显示为:Transfer function: 1.307-s2 + 0.6 s - 0.19用如下程序将传递函数的根轨迹图在MATLAB中表示出来:num=1.307den=1,0.6,-0.19rlocus(num,den)用MATLAB做出的根轨迹如图3所示:图3 根轨迹图由于系统在左半平面有极点,因此为不稳定系统.4.3 Bode图开环传递函数相角裕度增益裕度仿真程序:num=1.307den=1,0.6,-0.19

8、sys=tf(num,den)mag,phase,w=bode(num,den)gm,pm,wcg,wcp=margin(mag,phase,w)margin(sys)图4 Bode图MATLAB上显示:gm =0.1452pm=26.9546wcg =0.0038wcp =0.9872 由图4可知 :截止频率为0.99rad/s;相角裕度为26。;幅值裕度为0.0038。4.4 系统阶跃响应闭环传递函数:G(s)=1.307/(S2+0.6S+1.117); 利用如下程序在MATLAB中对系统绘制单位阶跃响应:num=1.307den=1,0.6,1.117step(num,den) 图5

9、系统阶跃响应图5 系统动态性能分析5.1使用MATLAB求系统各动态性能指标在MATLAB输入的指令为:num=0,0,1.307;den=1,0.6,1.117;G=tf(num,den);t=0:0.01:1;c=step(G,t);plot(t,c)gridy,x,t=step(num,den,t);maxy=max(y)ys=y(length(t)pos=(maxy-ys)/ysn=1;while y(n)0.5*ysn=n+1;endtd=t(n)n=1;while y(n)ysn=n+1;endtr=t(n)n=1;while y(n)0.95*ys)&(y(L)1.05*ys)L

10、=L-1;endts=t(L)title(Unit-Step Response of G(s) 章玲玲)软件输出如下为:图7 系统各项性能指标6系统仿真在MATLAB命令窗口中输入SIMULINK,然后点FileNewModel,在SOURCE中选择STEP模块,在SINKS中选择SCOP模块,在CONTINUOUS中选择传递函数,双击更改极点和零点(如图9所示),用直线将模块连接后(如图8),点击START,双击示波器,即可看到仿真图形.系统MATLAB仿真图形如图8所示; 图8 系统模型图 图9 参数设置图 图10 系统仿真图7总结与体会温度是工业生产中相当重要的参数之一,温度检测和控制的准确性直接影响生产状况和产品质量。因此,在很多工业现场,对温度测量及控制的精度都有着很高的要求。我做的是混合器温度控制系统,在这分析与仿真的过程中,我遇到过计算错误、程序错误、运行出不了图、仿真失败等问题,但在老师和同学的帮助下,我终于仿真成功!通过混合器温度控制系统的分析与仿真,我对系统的稳定性、结构等有了一定的了解,理论联系实际,在实践中加深了对控制系统的数学模型、系统的时域分析、系统的根轨迹等的理解!同时,在系统的仿真过程中,我也学会了如何用matlab进行系统分析与仿真,但是此系统还存在很多不足之处,望老师批评与指点!

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1