ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:47.95KB ,
资源ID:5092944      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/5092944.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(完整版碱裂解法制备质粒的各种溶液的作用及可能出现的问题.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

完整版碱裂解法制备质粒的各种溶液的作用及可能出现的问题.docx

1、完整版碱裂解法制备质粒的各种溶液的作用及可能出现的问题碱裂解法制备质粒的各种溶液的作用及提取中可能出现的问题、质粒提取三种溶液的作用:1.溶液I溶液 I: 50 mM 葡萄糖,25 mM Tris-HCI , 10 mM EDTA , pH 8.0任何生物化学反应,首先要控制好溶液的pH,因此用适当浓度的和适当pH 值的Tris-HCI溶液,是再自然不过的了。那么50 mM葡萄糖是干什么的呢?加 了葡萄糖后最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部。 因此,如果溶液I中缺了葡萄糖其实对质粒的抽提本身而言几乎没有任何影响, 所以说溶液I中葡萄糖是可缺的。EDTA是Ca2+和Mg2+等

2、二价金属离子的螯合剂,配 在分子生物学试剂中的主要作用是: 抑制DNase的活性,和抑制微生物生长。在溶液I中加入高达10 mM的EDTA,就是要把大肠杆菌细胞中的所有二价金属 离子都螯合掉。如果不加EDTA,其实也没什么大不了的,只要是在不太长的时 间里完成质粒抽提,就不用怕 DNA会迅速被降解,因为最终溶解质粒的 TE缓 冲液中有EDTA。如果手上正好缺了溶液I,可不可以抽质粒呢?只要用等体积 的水或LB培养基来悬浮菌体就可以了。有一点不能忘的是, 菌体一定要悬浮均匀,不能有结块。1.溶液II溶液 II,0.2 N NaOH,1% SDS轮到溶液II 了。这是用新鲜的0.4 N的NaOH和

3、2%的SDS等体积混合后 使用的。要新从浓NaOH稀释制备0.4N的NaOH,无非是为了保证NaOH没有 吸收空气中的CO2而减弱了碱性。很多人不知道其实 破细胞的主要是碱,而不 是SDS,所以才叫碱法抽提。事实上NaOH是最佳的溶解细胞的试剂,不管是大 肠杆菌还是哺乳动物细胞,碰到了碱都会几乎在瞬间就溶解,这是由于细胞膜发 生了从bilayer(双层膜)结构向micelle(微囊)结构的相变化所导致。用了不新鲜的 0.4 N NaOH,即便是有SDS也无法有效溶解大肠杆菌(不妨可以自己试一下),自 然就难高效率抽提得到质粒。如果只用 SDS当然也能抽提得到少量质粒,因为SDS也是碱性的,只是

4、弱了点而已。很多人对 NaOH的作用误以为是为了让基 因组DNA变性,以便沉淀,这是由于没有正确理解一些书上的有关 DNA变性复性的描述所导致。有人不禁要问,既然是 NaOH溶解的细胞,那为什么要加 SDS呢?那是为下一步操作做的铺垫。这一步要记住两点:第一,时间不能过长,千万不要这时候去接电话,因为在这样的碱性条件下基因组 DNA片断会慢慢断 裂;第二,必须温柔混合,不然基因组 DNA也会断裂。基因组DNA的断裂会 带来麻烦。1.溶液III溶液III : 3 M醋酸钾,2 M醋酸溶液III加入后就会有大量的沉淀,但大部分人却不明白沉淀的本质。最容 易产生的误解是,当SDS碰到酸性后发生的沉淀

5、。如果这样怀疑,往1%的SDS 溶液中加2M醋酸溶液看看就知道不是这么回事了。 大量沉淀的出现显然与SDS 的加入有关系。如果在溶液II中不加SDS,也会有少量沉淀,但量上要少得多, 显然是盐析和酸变性沉淀出来的蛋白质。既然 SDS不是遇酸发生的沉淀,那会不会是遇盐发生的沉淀呢?在 1%的SDS溶液中慢慢加入5 N的NaCI,会发现 SDS在高盐浓度下是会产生沉淀的。因此 高浓度的盐导致了 SDS的沉淀。但如 果你加入的不是NaCI而是KCI,你会发现沉淀的量要多的多。这其实是十二烷 基硫酸钠(SDS)遇到钾离子后变成了十二烷基硫酸钾(PDS),而PDS是水不溶的, 因此发生了沉淀。如此看来,

6、溶液III加入后的沉淀实际上是钾离子置换了 SDS 中的钠离子形成了不溶性的 PDS,而高浓度的盐,使得沉淀更完全。大家知道 SDS专门喜欢和蛋白质结合,平均两个氨基酸上结合一个 SDS分子,钾钠离子置换所产生的大量沉淀自然就将绝大部分蛋白质沉淀了, 让人高兴的是大肠杆菌的基因组DNA也一起被共沉淀了。这个过程不难想象,因为基因组 DNA太长了,长长的DNA自然容易被PDS给共沉淀了,尽管SDS并不与DNA分子结 合。那么2 M的醋酸又是为什么而加的呢?是为了中和 NaOH,因为长时间 的碱性条件会打断 DNA,所以要中和之。基因组 DNA 旦发生断裂, 只要是50 100 kb大小的片断,就

7、没有办法再被 PDS共沉淀了。所以碱处理的时间要短,而且不得激烈振荡,不然最后得到的质粒上总会有大量的基因 为是溶液III加入后基因组DNA无法快速复性就被沉淀了,这是天大的误 会,因为变性的也好复性的也好, DNA分子在中性溶液中都是溶解的NaOH本来是为了溶解细胞而用的, DNA分子的变性其实是个副产物, 与它是不是沉淀下来其实没有关系。溶液 III加入并混合均匀后在冰上放置,目的是为了 PDS沉淀更充分一点不要以为PDS沉淀的形成就能将所有的蛋白质沉淀了, 其实还有很多蛋白质不能被沉淀,因此要用酚 /氯仿/异戊醇进行抽提,然后进行酒精沉淀才能 得到质量稳定的质粒 DNA,不然时间一长就会

8、因为混入的 DNase而发生降 解。这里用25/24/1的酚/氯仿/异戊醇是有很多道理的,这里做个全面的介 绍。酚(Phenol)对蛋白质的变性作用远大于氯仿,按道理应该用酚来最大 程度将蛋白质抽提掉,但是水饱和酚的比重略比水重,碰到高浓度的盐溶液(比如4M的异硫氰酸胍),离心后酚相会跑到上层, 不利于含质粒的水相的回收;但加入氯仿后可以增加比重,使得酚 /氯仿始终在下层,方便水相的 回收;还有一点,酚与水有很大的互溶性,如果单独用酚抽提后会有大量的酚 溶解到水相中,而酚会抑制很多酶反应(比如限制性酶切反应) ,因此如果单独用酚抽提后一定要用氯仿抽提一次将水相中的酚去除, 而用酚/氯仿的混合液

9、进行抽提,跑到水相中的酚则少得多,微量的酚在乙醇沉淀时就会被除干净 而不必担心酶切等反应不能正常进行。至于 异戊醇的添加,其作用主要是为了 让离心后上下层的界面更加清晰,也方便了水相的回收。二、质粒提取常见问题解析1、 涂布棒在酒精蘸一下,然后烧一下,能不能保证把所用的菌烧死?涂布棒可以在酒精中保藏,但是酒精不能即时杀菌。蘸了酒精后再烧一小 会,烧的是酒精而不是涂布棒。建议涂布棒还是干烧较长时间后,冷却了再 涂。同时作多个转化时,应用几个涂布棒免得交叉污染。2、 原先测序鉴定没有问题的细菌, 37C摇菌后发现质粒大小或序列出现异常?这种情况出现的几率较小,常出现在较大质粒或比较特殊的序列中。

10、解决办法:(1)降低培养温度,在2025 C下培养,或室温培养可明显减少发生 概率。(2) 使用一些特殊菌株,如 Sure菌株,它缺失了一些重组酶,如 rec 类等,使得质粒复制更加稳定。(3) 质粒抽提有一个酶切不完全的原因就是溶液U中的 NaOH浓度过 高造成的,请大家注意一下!3、 未提出质粒或质粒得率较低,如何解决?(1)大肠杆菌老化:涂布平板培养后,重新挑选新菌落进行液体培养。(2) 质粒拷贝数低:由于使用低拷贝数载体引起的质粒 DNA提取量 低,可更换具有相同功能的高拷贝数载体。(3)菌体中无质粒:有些质粒本身不能在某些菌种中稳定存在,经多次 转接后有可能造成质粒丢失。例如,柯斯质

11、粒在大肠杆菌中长期保存不稳定, 因此不要频繁转接,每次接种时应接种单菌落。另外,检查筛选用抗生素使用浓度是否正确。(4) 碱裂解不充分:使用过多菌体培养液,会导致菌体裂解不充分,可 减少菌体用量或增加溶液的用量。对低拷贝数质粒,提取时可加大菌体用量并 加倍使用溶液,可以有助于增加质粒提取量和提高质粒质量。(5) 溶液使用不当:溶液 2 和 3 在温度较低时可能出现浑浊,应置于 37 C保温片刻直至溶解为清亮的溶液,才能使用。(6) 吸附柱过载:不同产品中吸附柱吸附能力不同,如果需要提取的质 粒量很大,请分多次提取。若用富集培养基,例如 TB或2XYT ,菌液体积 必须减少;若质粒是非常高的拷贝

12、数或宿主菌具有很高的生长率,则需减少LB 培养液体积。(7) 质粒未全部溶解 (尤其质粒较大时 ) :洗脱溶解质粒时,可适当加 温或延长溶解时间。(8) 乙醇残留:漂洗液洗涤后应离心尽量去除残留液体,再加入洗脱缓冲 液。(9) 洗脱液加入位置不正确:洗脱液应加在硅胶膜中心部位以确保洗脱液 会完全覆盖硅胶膜的表面达到最大洗脱效率。(10) 洗脱液不合适: DNA 只在低盐溶液中才能被洗脱, 如洗脱缓冲 液EB(10mM Tris-HCI, 1mM EDTA ,pH8.5)或水。洗脱效率还取决于 pH 值,最大洗脱效率在 pH7.0-8.5 间。当用水洗脱时确保其 pH 值在此范围 内,如果 pH

13、 过低可能导致洗脱量低。洗脱时将灭菌蒸馏水或洗脱缓冲液加热 至60 C后使用,有利于提高洗脱效率。(11 )洗脱体积太小:洗脱体积对回收率有一定影响。随着洗脱体积的增 大回收率增高,但产品浓度降低。为了得到较高的回收率可以增大洗脱体积。(12)洗脱时间过短:洗脱时间对回收率也会有一定影响。洗脱时放置 1min 可达到较好的效果。4、细菌离心加入溶液 I 蜗旋振荡后,发现菌体呈絮状不均匀或呈细砂状?(1 ) 很可能是细菌发生溶菌,可减少培养时间或者试试平板培养,质粒 提取前用 PBS 将菌落洗下,相较来说固体培养基上细菌生长的要好一些。(2) 质粒抽提过程很大程度上是受细菌生长情况决定的,刚活化

14、的菌比负80 C保存菌种所培养出来的菌液状态好, 保存久的菌株可能会造成质粒浓度低,质粒丢失等不明原因。(3) 判断生长的菌液是否正常,可以用肉眼观察,在光线明亮处摇荡新鲜 培养液, 如果发现菌液呈漂絮状, 情况很好。 如果发现呈泥水状,即看不到 絮状,只是感觉很浑浊,则可能提不出好的质粒,或者没有质粒。4) 菌液不宜生长太浓,摇床速度不宜过高。达到 OD600 1.5 就可以了,(尤其是对于试剂盒提取要注意)另外如果只是简单的酶切验证根本无需 酚氯仿抽提(安全考虑,慎重) ,只要溶液 I/ II /III 比例恰当,转管过程仔细 吸取不会有太多杂志。5、为什么加了溶液H后,菌体没有逐渐由混浊

15、变澄清?提出来的条带几乎没有,但是 RNA 很亮(没加 RNA 酶)?溶液U主要就是NaOH,如果菌液没有由混浊变澄清,参考见解:(1)可能是因为溶液储存不当,或屡次操作没有及时盖好溶液瓶盖,导致 其吸收空气中的 CO2 失效。 RNA 在菌体中量较多,相对少量的菌体裂解, 可有较 DNA 明显的条带。(2)可能是菌量大,加溶液U后,菌体并不能完全裂解,所以没有变清, 这也会导致质粒产率低下( 3)可能是质粒的拷贝数不高,质粒产率不高如果是使用自己配的试 剂,建议做中提或大提; 或者买试剂盒提 用自己配的试剂, 不加 RNA 酶,最后RNA是很亮的,要去除干净就要用比较好的RNA酶。( 4)如

16、果不是试剂的原因, 可能是质粒表达的过程中使膜蛋白变化 (数 量变多),很难使用碱裂解法, 可以尝试用其他比较剧烈的方法 (比如高温或 者低温研磨等 ),然后使用一般的发放。( 5)可能质粒随乙醇一起倒掉了。6、加入溶液 II 后,菌液仍然呈浑浊状态,或者混浊度没有明显的改变?(1)问题可能是发生在溶液 II 上。首先看看 10SDS 是否是澄清的? NaOH 是否是有效的?如果使用的是试剂盒, 也要首先确认溶液 II 是否澄清 没有沉淀?(2)可能是细菌浓度很高,适当调整增加溶液 I/II/III 的体积。(3)可能是 “杂菌”污染,如果菌液生长异常快,就有可能被杂菌污染。 这种情况一般表现

17、为和目的菌有相同的抗性,生长速度异常,能够提出质粒, 跑胶的条带也异常的亮,但产物不是自己想要的质粒,要特别注意一下。7、抽提DNA去除蛋白质时,为什么要是酚 /氯仿混合使用?怎样使用酚与氯仿较好?酚与氯仿都是非极性分子,水是极性分子,当蛋白水溶液与酚或氯仿混合 时,蛋白质分子之间的水分子就被酚或氯仿挤去,使蛋白失去水合状态而变 性。经过离心,变性蛋白质的密度比水的密度大, 因而与水相分离,沉淀在水相下面,从而与溶解在水相中的 DNA分开。而酚与氯仿有机溶剂比重更 大,保留在最下层。作为表面变性的酚与氯仿,在去除蛋白质的作用中,各有 利弊,酚的变性作用大,但酚与水相有一定程度的互溶, 大约10

18、 %15 %的水溶解在酚相中,因而损失了这部分水相中的 DNA,而氯仿的变性作用不如酚效果好, 但氯仿与水不相混溶, 不会带走DNA。所以在抽提过程中, 混合使用酚与氯仿效果最好。经酚第一次抽提后的水相中有残留的酚,由于酚 与氯仿是互溶的,可用氯仿第二次变性蛋白质,此时一起将酚带走。也可以在 第二次抽提时,将酚与氯仿混合(1:1)使用。&呈粉红色的酚可否使用?如何保存酚不被空气氧化?保存在冰箱中的酚,容易被空气氧化而变成粉红色的,这样的酚容易降解 DNA,一般不可以使用。 为了防止酚的氧化,可加入疏基乙醇和 8-羟基喹琳至终浓度为0.1 %。8-羟基喹琳是带有淡黄色的固体粉末,不仅能抗氧化,

19、并在一定程度上能抑制 DNase的活性,它是金属离子的弱螯合剂。用 TrispH8.0水溶液饱和后的酚,最好分装在棕色小试剂瓶里,上面盖一层 Tris水溶液或TE缓冲液,隔绝空气,以装满盖紧盖子为宜,如有可能,可充氮气防 止与空气接触而被氧化。平时保存在 4C或-20 C冰箱中,使用时,打开盖子 吸取后迅速加盖,这样可使酚不变质,可用数月。9、为什么用酚与氯仿抽提 DNA时,还要加少量的异戊醇?在抽提DNA时,为了混合均匀,必须剧烈振荡容器数次,这时在混合液 内易产生气泡,气泡会阻止相互间的充分作用。加入异戊醇能降低分子表面张 力,可以降低抽提过程中的泡沫产生。一般采用氯仿与异戊酵为 24:

20、1之比。也可采用酚、氯仿与异戊醇之比为 25 : 24:1 (不必先配制,可在临用前把一份酚加一份 24: 1的氯仿与异戊醇即成):同时异戊醇有助于分相,使 离心后的上层水相,中层变性蛋白相以及下层有机溶剂相维持稳定。10、加入酚 / 氯仿抽提,离心后在水相和有机相间没有出现变性蛋白 相层,在随后的乙醇沉淀步骤中却出现大量的半透明沉淀, 溶解后发 现蛋白浓度很高?乙醇沉淀时,较纯的质粒沉淀是白色的 (PEG纯化的沉淀是透明的肉眼不易发现),如沉淀是半透明的凝胶状,则应是蛋白含量高。首先看看平衡酚是否已被氧化? pH 是否是 8.0 ?其次检测溶液 III 反应 完成后的离心上清 pH 是否在

21、8.0 左右?有时由于溶液 III 配置的问题,会出 现溶液 III 反应后离心的上清 pH 与 8.0 偏差较大的现象, 这会降低平衡酚抽 提蛋白抽的有效性, pH 偏差过大也会导致水相和平衡酚互溶。11、使用酚仿抽提方法,质粒的纯度很好,但酶切不能完全切开( 1)确认酶的有效性。(2) 平衡酚是否被氧化(正常是黄色,而氧化后是棕色的) 。(3) 是否不小心吸入了痕量的酚。(4) 乙醇沉淀后, 70%乙醇漂洗的是否充分(残留的盐类会影响酶 切)。(5) 乙醇漂洗后是否完全干燥(残留的乙醇会影响酶切) 。12、碱裂解法提取的质粒 DNA 进行琼脂糖电泳进行鉴定时, 看到的三条带分别是什么?碱法

22、抽提得到质粒样品中不含线性 DNA , 得到的三条带是以电泳速度 的快慢排序的,分别是超螺旋、开环和复制中间体(即没有复制完全的两个质 粒连在了一起) 。如果你不小心在溶液 II 加入后过度振荡,会有第四条带, 这条带泳动得较慢,远离这三条带,是 20-100kb 的大肠杆菌基因组 DNA 的 片断。13、提取质粒中 RNA 没有去除 ?可能是 RNase 失效或效率不高。( 1)更换 RNase A ,并保证其储存条件是正确的(2)手工提取质粒的,可单独增加一步去除 RNA 的步骤 ,溶液 III 反应后,在离心的上清中加 RNase,室温下去除 RNA 10min30min (需要保 证R

23、Nase A是经过失活DNase的),同时较高温度(如 50 C)会更加快速 完全的去除RNA,经验所得经过高温处理的质粒质量不是很高。14、 提取的质粒电泳后,为连续的一片火箭状?( 1 )质粒如果盐离子多,会有走胶变形的现象, 如果提到的质粒不够 纯,会有电泳条带不平齐的现象。( 2)当电压太大时,容易出现火箭状,而降解应该是弥散状。(3) 可能是宿主菌影响的,质粒抽提好后,用酚 -氯仿处理一下再酶切, 若有改善,则为宿主菌影响。转化到其它宿主菌再切 。(4) NaOH 的浓度过高,会出现火箭状的结果。15、 用碱裂解法提取质粒,裂解 5 分钟,没有用酚 / 氯仿抽提,最 后用灭菌水溶解质

24、粒 DNA15min 。双酶切后跑胶一条带都没有,原 因是什么?(1) 溶解时间稍微短了点,但是根据各个实验室 RNase 不同,这个 条件是不同的。在溶解的过程要涡旋处理促进溶解。(2) 确认一下酶切过程中是不是有 DNA 酶的污染,比如酶切体系的 Buffer 或者是水,特别是水中;其次是酶切体系的问题;建议再把提取的产物 用 70% 酒精重新洗涤一遍,也可以用酚 / 氯仿重新抽提一下。( 3)也可能在用乙醇洗时把质粒倒掉了。(4) 没有用 RNase 消化,不要用放久的 RNase 否则会有 DNA 酶的污 染;(5) 在没有进行酶切时 ,把所提的质粒跑一下核酸电泳看看 ,如果是提核 酸

25、的问题那这一步电泳结果应该没有大于三千的条带,这样可以先排除核酸提 取的问题 . 若是没有酶切时间过长等其他问题的话可以那可以检查一下所用的 溶解 DNA 的溶液是否有 DNAse 污染的问题,建议将超纯水换成 TE。(1) 做一次阴性对照 ,拿空白菌涂布在含 amp 的平板上 ,如生长 ,说明 amp 过期,一般这种情况不多见。一般粉末状的 amp 不容易失效 ,如果 amp 有效的话 ,可以配制远高于标准的浓度 ,如果细菌耐药的话 ,也能生长良好 ,如 不耐药 ,则放置数天仍不见细菌生长。(2) 拿阴性和阳性的细菌各取数个放于高浓度的 amp 液体培养基中 ,如 能生长 ,说明空白菌中带有

26、耐药菌 ,建议换菌 .( 3 )提质粒的菌受污染了,重新划线挑单克隆。17、培养基、抗生素、质粒提取都没有问题,而细菌菌液提取不到质粒?如果是氨苄抗性的,有可能是质粒丢失造成的。主要是培养时间较长, 导 致培养基中的 beta- 内酰胺酶过多, 作用时间过长, 同时培养基 pH 值降 低,氨苄青霉素失活,从而使无质粒的菌株大量增殖。解决的办法:可以添加葡萄糖,缩短培养时间,改用羧苄青霉素。 用无水乙醇沉淀 DNA ,这是实验中最常用的沉淀 DNA 的方法。乙醇的 优点是可以任意比和水相混溶,乙醇与核酸不会起任何化学反应,对 DNA 很 安全,因此是理想的沉淀剂。DNA 溶液是 DNA 以水合状

27、态稳定存在,当加入乙醇时,乙醇会夺去 DNA 周围的水分子,使 DNA 失水而易于聚合。一般实验中,是加 2 倍体积 的无水乙醇与 DNA 相混合,其乙醇的最终含量占 67左右。因而也可改用 95 乙醇来替代无水乙醇(因为无水乙醇的价格远远比 95乙醇昂贵)。但 是加 95的乙醇使总体积增大, 而 DNA 在溶液中有一定程度的溶解,因而 DNA 损失也增大,尤其用多次乙醇沉淀时,就会影响收得率。折中的做法是初次沉淀 DNA 时可用 95乙醇代替无水乙酵,最后的沉 淀步骤要使用无水乙醇。也可以用 0.6 倍体积的异丙醇选择性沉淀 DNA 。一 般在室温下放置 15 30 分钟即可。19、在用乙醇

28、沉淀 DNA 时,为什么一定要加 NaAc 或 NaCl 至最终浓度达 0.1 0.25mol/L ?在 pH 为 8 左右的溶液中, DNA 分子是带负电荷的, 加一定浓度的 NaAc 或 NaCl ,使 Na+ 中和 DNA 分子上的负电荷,减少 DNA 分子之间的 同性电荷相斥力,易于互相聚合而形成 DNA 钠盐沉淀,当加入的盐溶液浓度 太低时,只有部分 DNA 形成 DNA 钠盐而聚合,这样就造成 DNA 沉淀不完 全,当加入的盐溶液浓度太高时,其效果也不好。在沉淀的 DNA 中,由于过 多的盐杂质存在,影响 DNA 的酶切等反应,必须要进行洗涤或重沉淀。20、加核糖核酸酶降解核糖核酸

29、后, 为什么再要用 SDS 与 KAc 来处理?加进去的 RNase 本身是一种蛋白质,为了纯化 DNA ,又必须去除之,加SDS可使它们成为SDS-蛋白复合物沉淀, 再加KAc使这些复合物转变 为溶解度更小的钾盐形式的 SDS-蛋白质复合物, 使沉淀更加完全。 也可用饱和酚、氯仿抽提再沉淀,去除 RNase。在溶液中,有人以 KAc代替 NaAc,也可以收到较好效果。21、为什么在保存或抽提 DNA过程中,一般采用TE缓冲液?在基因操作实验中,选择缓冲液的主要原则是考虑 DNA的稳定性及缓冲液成分不产生干扰作用。磷酸盐缓冲系统( pKa二7.2)和硼酸系统(pKa=9.24 )等虽然也都符合

30、细胞内环境的生理范围 (pH),可作 DNA的保存液,但在转化实验时,磷酸根离子的种类及数量将与 Ca2+产生Ca3(PO4)2沉淀;在DNA反应时,不同的酶对辅助因子的种类及数量要求不同,有的要 求高离子浓度,有的则要求低盐浓度,采用 Tris-HCI (pKa=8.0 )的缓冲系统,由于缓冲液是TrisH+/Tris ,不存在金属离子的干扰作用, 故在提取或保存DNA时,大都采用Tris-HCl系统,而TE缓冲液中的EDTA更能稳定 DNA的活性。采用PEG (6000)沉淀DNA,大小不同的 DNA分子所用的PEG的 浓度也不同,PEG的浓度低,选择性沉淀 DNA分子量大,大分子所需 P

31、EG 的浓度只需1 %左右,小分子所需 PEG浓度高达20 %。本实验选择性沉淀 4.3kb的pBR322 质粒DNA,每毫升加入 0.4毫升的30 % PEG,其最终 PEG浓度为12%。PEG选择性沉淀DNA的分辨率大约100bp。三、拓展(二)细菌的收获和裂解。细菌的收获可通过 离心来进行,而细菌的裂解则可以采用多种方法中的任意 一种,这些方法包括用非离子型或离子型去污剂、 有机溶剂或碱进行处理及用加 热处理等。选择哪一种方法取决于3个因素:质粒的大小、小肠杆菌菌株及裂解 后用于纯化质粒DNA的技术。尽管针对质粒和宿主的每一种组合分别提出精 确的裂解条件不切实际,但仍可据下述一般准则来选

32、择适当方法, 以取得满意的结果。1、 大质粒(大于15kb)容易受损,故应采用漫和裂解法从细胞中释放出来。将细菌悬于蔗糖等渗溶液中,然后用溶菌酶和 EDTA进生处理,破坏细胞壁和细胞外膜,再加入SDS 一类去污剂溶解球形体。这种方法最大限度地减小了从具有 正压的细菌内部把质粒释放出来所需要的作用力。2、 可用更剧烈的方法来分离小质粒。在加入EDTA后,有时还在加入溶菌酶后 让细菌暴露于去污剂,通过煮沸或碱处理使之裂解。这些处理可破坏碱基配对, 故可使宿主的线状染色体 DNA 变性,但闭环质粒 DNA 链由于处于拓扑缠绕状 态而不能彼此分开。当条件恢复正常时,质粒 DNA 链迅速得到准确配置,重新 形成完全天然的超螺旋分子。3、一些 大肠杆菌菌株 (如 HB101 的一些变种衍生株 ) 用去污剂或加热裂解时可 释

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1