1、小学数学奥数题六年级练习小学六年级奥数题 一.工程问题 1甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时? 解: 1/20+1/169/80表示甲乙的工作效率 ,9/80545/80表示5小时后进水量 1-45/8035/80表示还要的进水量 ,35/80(9/80-1/10)35表示还要35小时注满 答:5小时后还要35小时就能将水池注满。 2修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队
2、的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天? 解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/107/100,可知甲乙合作工效甲的工效乙的工效。 又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。只有这样才能“两队合作的天数尽可能少”。 设合作时间为x天,则甲独做时间为(16-x)天 1/20*(16-x)+7/100*x1 x10 答:甲乙最短合作10天 3一件工作,甲、乙合做需4小时完成
3、,乙、丙合做需5小时完成。现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。乙单独做完这件工作要多少小时? 解: 由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量 (1/4+1/5)29/10表示甲做了2小时、乙做了4小时、丙做了2小时的工作量。 根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。 所以19/101/10表示乙做6-42小时的工作量。 1/1021/20表示乙的工作效率。 11/2020小时表示乙单独完成需要20小时。答:乙单独完成需要20小时。 4师徒俩人加工同样多的零件。当师傅完成了1
4、/2时,徒弟完成了120个。当师傅完成了任务时,徒弟完成了4/5这批零件共有多少个? 解:120(4/52)300个 可以这样想:师傅第一次完成了1/2,第二次也是1/2,两次一共全部完工,那么徒弟第二次后共完成了4/5,可以推算出第一次完成了4/5的一半是2/5,刚好是120个。 答案为300个 6一批树苗,如果分给男女生栽,平均每人栽6棵;如果单份给女生栽,平均每人栽10棵。单份给男生栽,平均每人栽几棵? 解:算式:1(1/6-1/10)15棵 答案是15棵 7一个池上装有3根水管。甲管为进水管,乙管为出水管,20分钟可将满池水放完,丙管也是出水管,30分钟可将满池水放完。现在先打开甲管,
5、当水池水刚溢出时,打开乙,丙两管用了18分钟放完,当打开甲管注满水是,再打开乙管,而不开丙管,多少分钟将水放完? 解:1(1/20+1/30)12 表示乙丙合作将满池水放完需要的分钟数。 1/12*(18-12)1/12*61/2 表示乙丙合作将漫池水放完后,还多放了6分钟的水,也就是甲18分钟进的水。 1/2181/36 表示甲每分钟进水 最后就是1(1/20-1/36)45分钟。 答案45分钟。 8某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天? 解: 由“若乙队去做,要超过规
6、定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知: 乙做3天的工作量甲2天的工作量 即:甲乙的工作效率比是3:2 甲、乙分别做全部的的工作时间比是2:3 ,时间比的差是1份 ,实际时间的差是3天 所以3(3-2)26天,就是甲的时间,也就是规定日期 答案为6天 方程方法: 1/x+1/(x+2)2+1/(x+2)(x-2)1 解得x6 9两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟? 解:设停电了x分钟 根据题意列方
7、程 1-1/120*x(1-1/60*x)*2 解得x40 答案为40分钟。 二鸡兔同笼问题 1鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只? 解: 4*100400,400-0400 假设都是兔子,一共有400只兔子的脚,那么鸡的脚为0只,鸡的脚比兔子的脚少400只。 400-28372 实际鸡的脚数比兔子的脚数只少28只,相差372只,这是为什么? 4+26 这是因为只要将一只兔子换成一只鸡,兔子的总脚数就会减少4只(从400只变为396只),鸡的总脚数就会增加2只(从0只到2只),它们的相差数就会少4+26只(也就是原来的相差数是400-0400,现在的相差数为396-
8、2394,相差数少了400-3946) 372662 表示鸡的只数,也就是说因为假设中的100只兔子中有62只改为了鸡,所以脚的相差数从400改为28,一共改了372只,100-6238表示兔的只数 三数字数位问题 1把1至2005这2005个自然数依次写下来得到一个多位数123456789.2005,这个多位数除以9余数是多少? 解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。 解题:1+2+3+4+5+6+7+8+9=45;45能被9整除 依次类推:11999这些数的个位上的
9、数字之和可以被9整除 1019,20299099这些数中十位上的数字都出现了10次,那么十位上的数字之和就是10+20+30+90=450 它有能被9整除 同样的道理,100900 百位上的数字之和为4500 同样被9整除 也就是说1999这些连续的自然数的各个位上的数字之和可以被9整除; 同样的道理:10001999这些连续的自然数中百位、十位、个位 上的数字之和可以被9整除(这里千位上的“1”还没考虑,同时这里我们少200020012002200320042005 从10001999千位上一共999个“1”的和是999,也能整除; 200020012002200320042005的各位数字
10、之和是27,也刚好整除。 最后答案为余数为0。 2A和B是小于100的两个非零的不同自然数。求A+B分之A-B的最小值. 解: (A-B)/(A+B) = (A+B - 2B)/(A+B) = 1 - 2 * B/(A+B) 前面的 1 不会变了,只需求后面的最小值,此时 (A-B)/(A+B) 最大。 对于 B / (A+B) 取最小时,(A+B)/B 取最大, 问题转化为求 (A+B)/B 的最大值。 (A+B)/B = 1 + A/B ,最大的可能性是 A/B = 99/1 (A+B)/B = 100 (A-B)/(A+B) 的最大值是: 98 / 100 3已知A.B.C都是非0自然数
11、,A/2 + B/4 + C/16的近似值市6.4,那么它的准确值是多少? 解:因为A/2 + B/4 + C/168A+4B+C/166.4, 所以8A+4B+C102.4,由于A、B、C为非0自然数,因此8A+4B+C为一个整数,可能是102,也有可能是103。 当是102时,102/166.375 当是103时,103/166.4375 答案为6.375或6.4375 4一个三位数的各位数字 之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数. 解:设原数个位为a,则十位为a+1,百位为16-2a
12、根据题意列方程100a+10a+16-2a100(16-2a)-10a-a198 解得a6,则a+17 16-2a4 答:原数为476。 5一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数. 解:设该两位数为a,则该三位数为300+a 7a+24300+a a24 答:该两位数为24。 6把一个两位数的个位数字与十位数字交换后得到一个新数,它与原数相加,和恰好是某自然数的平方,这个和是多少? 解:设原两位数为10a+b,则新两位数为10b+a 它们的和就是10a+b+10b+a11(a+b) 因为这个和是一个平方数,可以确定a+b11 因此这个和就是11111
13、21 答:它们的和为121。 7一个六位数的末位数字是2,如果把2移到首位,原数就是新数的3倍,求原数. 解:设原六位数为abcde2,则新六位数为2abcde(字母上无法加横线,请将整个看成一个六位数) 再设abcde(五位数)为x,则原六位数就是10x+2,新六位数就是200000+x 根据题意得,(200000+x)310x+2 解得x85714 所以原数就是857142 答:原数为857142 8有一个四位数,个位数字与百位数字的和是12,十位数字与千位数字的和是9,如果个位数字与百位数字互换,千位数字与十位数字互换,新数就比原数增加2376,求原数. 解:设原四位数为abcd,则新数
14、为cdab,且d+b12,a+c9 根据“新数就比原数增加2376”可知abcd+2376=cdab,列竖式便于观察 根据d+b12,可知d、b可能是3、9;4、8;5、7;6、6。 再观察竖式中的个位,便可以知道只有当d3,b9;或d8,b4时成立。 先取d3,b9代入竖式的百位,可以确定十位上有进位。 根据a+c9,可知a、c可能是1、8;2、7;3、6;4、5。 再观察竖式中的十位,便可知只有当c6,a3时成立。 再代入竖式的千位,成立。 得到:abcd3963 再取d8,b4代入竖式的十位,无法找到竖式的十位合适的数,所以不成立。 答案为3963 9有一个两位数,如果用它去除以个位数字
15、,商为9余数为6,如果用这个两位数除以个位数字与十位数字之和,则商为5余数为3,求这个两位数. 解:设这个两位数为ab 10a+b9b+6 10a+b5(a+b)+3 化简得到一样:5a+4b3 由于a、b均为一位整数 得到a3或7,b3或8 原数为33或78均可以 10如果现在是上午的10点21分,那么在经过28799.99(一共有20个9)分钟之后的时间将是几点几分? 解: (287999(20个9)+1)/60/24整除,表示正好过了整数天,时间仍然还是10:21,因为事先计算时加了1分钟,所以现在时间是10:20 , 答案是10:20 五抽屉原理、奇偶性问题 1一只布袋中装有大小相同但
16、颜色不同的手套,颜色有黑、红、蓝、黄四种,问最少要摸出几只手套才能保证有3副同色的? 解:可以把四种不同的颜色看成是4个抽屉,把手套看成是元素,要保证有一副同色的,就是1个抽屉里至少有2只手套,根据抽屉原理,最少要摸出5只手套。这时拿出1副同色的后4个抽屉中还剩3只手套。再根据抽屉原理,只要再摸出2只手套,又能保证有一副手套是同色的,以此类推。 把四种颜色看做4个抽屉,要保证有3副同色的,先考虑保证有1副就要摸出5只手套。这时拿出1副同色的后,4个抽屉中还剩下3只手套。根据抽屉原理,只要再摸出2只手套,又能保证有1副是同色的。以此类推,要保证有3副同色的,共摸出的手套有:5+2+2=9(只)
17、答:最少要摸出9只手套,才能保证有3副同色的。 2有四种颜色的积木若干,每人可任取1-2件,至少有几个人去取,才能保证有3人能取得完全一样? 解: 每人取1件时有4种不同的取法,每人取2件时,有6种不同的取法. 当有11人时,能保证至少有2人取得完全一样: 当有21人时,才能保证到少有3人取得完全一样. 答案为21 3某盒子内装50只球,其中10只是红色,10只是绿色,10只是黄色,10只是蓝色,其余是白球和黑球,为了确保取出的球中至少包含有7只同色的球,问:最少必须从袋中取出多少只球? 解:需要分情况讨论,因为无法确定其中黑球与白球的个数。 当黑球或白球其中没有大于或等于7个的,那么就是:
18、6*4+10+1=35(个) 如果黑球或白球其中有等于7个的,那么就是: 6*5+3+134(个) 如果黑球或白球其中有等于8个的,那么就是: 6*5+2+133 如果黑球或白球其中有等于9个的,那么就是: 6*5+1+132 4地上有四堆石子,石子数分别是1、9、15、31如果每次从其中的三堆同时各取出1个,然后都放入第四堆中,那么,能否经过若干次操作,使得这四堆石子的个数都相同?(如果能请说明具体操作,不能则要说明理由) 答:不可能。 因为总数为1+9+15+3156 56/414 14是一个偶数 而原来1、9、15、31都是奇数,取出1个和放入3个也都是奇数,奇数加减若干次奇数后,结果一
19、定还是奇数,不可能得到偶数(14个)。 七路程问题 1狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。问:狗再跑多远,马可以追上它? 解:根据“马跑4步的距离狗跑7步”,可以设马每步长为7x米,则狗每步长为4x米。 根据“狗跑5步的时间马跑3步”,可知同一时间马跑3*7x米21x米,则狗跑5*4x20米。 可以得出马与狗的速度比是21x:20x21:20 根据“现在狗已跑出30米”,可以知道狗与马相差的路程是30米,他们相差的份数是21-201,现在求马的 21份是多少路程,就是 30(21-20)21630米 2甲乙辆车同时从a b两地相对开出,几小时后再距中
20、点40千米处相遇?已知,甲车行完全程要8小时,乙车行完全程要10小时,求a b 两地相距多少千米? 分析:由“甲车行完全程要8小时,乙车行完全程要10小时”可知,相遇时甲行了10份,乙行了8份(总路程为18份),两车相差2份。又因为两车在中点40千米处相遇,说明两车的路程差是(40+40)千米。所以算式是(40+40)(10-8)(10+8)720千米。 答案720千米 3在一个600米的环形跑道上,兄两人同时从同一个起点按顺时针方向跑步,两人每隔12分钟相遇一次,若两个人速度不变,还是在原来出发点同时出发,哥哥改为按逆时针方向跑,则两人每隔4分钟相遇一次,两人跑一圈各要多少分钟? 解:600
21、12=50,表示哥哥、弟弟的速度差 6004=150,表示哥哥、弟弟的速度和 (50+150)2=100,表示较快的速度,方法是求和差问题中的较大数 (150-50)/2=50,表示较慢的速度,方法是求和差问题中的较小数 600100=6分钟,表示跑的快者用的时间 600/50=12分钟,表示跑得慢者用的时间 答案为两人跑一圈各要6分钟和12分钟。 4慢车车长125米,车速每秒行17米,快车车长140米,车速每秒行22米,慢车在前面行驶,快车从后面追上来,那么,快车从追上慢车的车尾到完全超过慢车需要多少时间? 分析:算式是(140+125)(22-17)=53秒 可以这样理解:“快车从追上慢车
22、的车尾到完全超过慢车”就是快车车尾上的点追及慢车车头的点,因此追及的路程应该为两个车长的和。 答案为53秒 5在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米? 分析:300(5-4.4)500秒,表示追及时间,55002500米,表示甲追到乙时所行的路程 25003008圈100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。 6一个人在铁道边,听见远处传来的火车汽笛声后,在经过57秒火车经过她前面,已知火车鸣笛时离他1360米,(轨道是直的),声音每秒传340米,求火车的
23、速度(得出保留整数) 算式:1360(1360340+57)22米/秒 关键理解:人在听到声音后57秒才车到,说明人听到声音时车已经从发声音的地方行出13603404秒的路程。也就是1360米一共用了4+5761秒。 答案为22米/秒 7猎犬发现在离它10米远的前方有一只奔跑着的野兔,马上紧追上去,猎犬的步子大,它跑5步的路程,兔子要跑9步,但是兔子的动作快,猎犬跑2步的时间,兔子却能跑3步,问猎犬至少跑多少米才能追上兔子。 解: 由“猎犬跑5步的路程,兔子要跑9步”可知当猎犬每步a米,则兔子每步5/9米。由“猎犬跑2步的时间,兔子却能跑3步”可知同一时间,猎犬跑2a米,兔子可跑5/9a*35
24、/3a米。从而可知猎犬与兔子的速度比是2a:5/3a6:5,也就是说当猎犬跑60米时,兔子跑50米,本来相差的10米刚好追完,答案是至少跑60米才能追上 8 AB两地,甲乙两人骑自行车行完全程所用时间的比是4:5,如果甲乙二人分别同时从AB两地相对行使,40分钟后两人相遇,相遇后各自继续前行,这样,乙到达A地比甲到达B地要晚多少分钟? 解:设全程为1,甲的速度为x乙的速度为y 列式40x+40y=1 x:y=5:4 得x=1/72 y=1/90 走完全程甲需72分钟,乙需90分钟 故得解答案为18分钟 9甲乙两车同时从AB两地相对开出。第一次相遇后两车继续行驶,各自到达对方出发点后立即返回。第
25、二次相遇时离B地的距离是AB全程的1/5。已知甲车在第一次相遇时行了120千米。AB两地相距多少千米? 解:通过画线段图可知,两个人第一次相遇时一共行了1个AB的路程,从开始到第二次相遇,一共又行了3个AB的路程,可以推算出甲、乙各自共所行的路程分别是第一次相遇前各自所走的路程的3倍。即甲共走的路程是120*3360千米,从线段图可以看出,甲一共走了全程的(1+1/5)。 因此360(1+1/5)300千米 从A地到B地,甲、乙两人骑自行车分别需要4小时、6小时,现在甲乙分别AB两地同时出发相向而行,相遇时距AB两地中点2千米。如果二人分别至B地,A地后都立即折回。第二次相遇点第一次相遇点之间
26、有()千米 10一船以同样速度往返于两地之间,它顺流需要6小时;逆流8小时。如果水流速度是每小时2千米,求两地间的距离? 解:(1/6-1/8)21/48表示水速的分率 21/4896千米表示总路程 11快车和慢车同时从甲乙两地相对开出,快车每小时行33千米,相遇是已行了全程的七分之四,已知慢车行完全程需要8小时,求甲乙两地的路程。 解: 相遇是已行了全程的七分之四表示甲乙的速度比是4:3,时间比为3:4 所以快车行全程的时间为8/4*36小时 ,6*33198千米 12小华从甲地到乙地,3分之1骑车,3分之2乘车;从乙地返回甲地,5分之3骑车,5分之2乘车,结果慢了半小时.已知,骑车每小时1
27、2千米,乘车每小时30千米,问:甲乙两地相距多少千米? 解: 把路程看成1,得到时间系数,去时时间系数:1/312+2/330,返回时间系数:3/512+2/530 两者之差:(3/512+2/530)-(1/312+2/330)=1/75相当于1/2小时 去时时间:1/2(1/312)1/75和1/2(2/330)1/75 路程:121/2(1/312)1/75+301/2(2/330)1/75=37.5(千米) 八比例问题 1甲乙两人在河边钓鱼,甲钓了三条,乙钓了两条,正准备吃,有一个人请求跟他们一起吃,于是三人将五条鱼平分了,为了表示感谢,过路人留下10元,甲、乙怎么分?解:“三人将五条
28、鱼平分,客人拿出10元”,可以理解为五条鱼总价值为30元,那么每条鱼价值6元。 又因“甲钓了三条”,相当于甲吃之前已出资3*618元,“乙钓了两条”,相当于乙吃之前已经出资2*612元。 而甲乙两人吃了的价值都是10元,所以甲还可以收回18-108元 乙还可以收回12-102元 刚好就是客人出的钱。 2 甲乙两车分别从A.B两地出发,相向而行,出发时,甲.乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米,那么A.B两地相距多少千米? 解: 原来甲.乙的速度比是5:4 , 现在的甲:5(1-20)4 , 现在的乙:4(1+20)4.8
29、 甲到B后,乙离A还有:5-4.80.2 , 总路程:100.2(4+5)450千米 4一个圆柱的底面周长减少25%,要使体积增加1/3,现在的高和原来的高度比是多少? 解:根据“周长减少25”,可知周长是原来的3/4,那么半径也是原来的3/4,则面积是原来的9/16。 根据“体积增加1/3”,可知体积是原来的4/3。 体积底面积高 现在的高是4/39/1664/27,即现在的高是原来的高的64/27或者现在的高:原来的高64/27:164:27 5某市场运来香蕉、苹果、橘子和梨四种水果其中橘子、苹果共30吨香蕉、橘子和梨共45吨。橘子正好占总数的13分之2。一共运来水果多少吨? 第二题:答案
30、为65吨 橘子+苹果30吨 香蕉+橘子+梨45吨 所以橘子+苹果+香蕉+橘子+梨75吨 橘子(香蕉+苹果+橘子+梨)2/13 说明:橘子是2份,香蕉+苹果+橘子+梨是13份 橘子+香蕉+苹果+橘子+梨一共是2+1315份 过桥问题(1) 1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟? 分析:这道题求的是通过时间。根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。路程是用桥长加上车长。火车的速度是已知条件。 答:这列火车通过长江大桥需要17.1分钟。 2. 一列火车长200米,全车通过长700米的桥需要30
31、秒钟,这列火车每秒行多少米? 分析与解答:这是一道求车速的过桥问题。我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。 答:这列火车每秒行30米。 3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米? 分析与解答:火车过山洞和火车过桥的思路是一样的。火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。 答:这个山洞长60米。 和倍问题 1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1