ImageVerifierCode 换一换
格式:DOCX , 页数:65 ,大小:704.64KB ,
资源ID:4978522      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4978522.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(整理石油天然气工程设计防火规范条文说明.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

整理石油天然气工程设计防火规范条文说明.docx

1、整理石油天然气工程设计防火规范条文说明石油天然气工程设计防火规范GB 50183-2004条文说明1.0.1 为了在石油天然气工程设计中贯彻“预防为主,防消结合”的方针,规范设计要求,防止和减少火灾损失,保障人身和财产安全,制定本规范。 1.0.2 本规范适用于新建、扩建、改建的陆上油气田工程、管道站场工程和海洋油气田陆上终端工程的防火设计。 1.0.3 石油天然气工程防火设计,必须遵守国家有关方针政策,结合实际,正确处理生产和安全的关系,积极采用先进的防火和灭火技术,做到保障安全生产,经济实用。 1.0.4 石油天然气工程防火设计除执行本规范外,尚应符合国家现行的有关强制性标准的规定。 2

2、术 语 2. 1 石油天然气及火灾危险性术语 2.1.1 油品 oil系指原油、石油产品 (汽油、煤油、柴油、石脑油等) 、稳定轻烃和稳定凝析油。 2.1.2 原油 crude oil 油井采出的以烃类为主的液态混合物。 2.1.3 天然气凝液 natural gas liquids(NGL) 从天然气中回收的且未经稳定处理的液体烃类混合物的总称,一般包括乙烷、液化石油气和稳定轻烃成分。也称混合轻烃。 2.1.4 液化石油气 liquefied petroleum gas(LPG) 常温常压下为气态,经压缩或冷却后为液态的丙烷、丁烷及其混合物。 2.1.5 稳定轻烃 natural gaso1

3、ine 从天然气凝液中提取的,以戊烷及更重的烃类为主要成分的油品,其终沸点不高于190,在规定的蒸气压下,允许含有少量丁烷。也称天然汽油。 2.1.6 未稳定凝析油 gas condensate 从凝析气中分离出的未经稳定的烃类液体。 2.1.7 稳定凝析油 stabilized gas condensate 从未稳定凝析油中提取的,以戊烷及更重的烃类为主要成分的油品。 2.1.8 液化天然气 liquefied natural gas(LNG) 主要由甲烷组成的液态流体,并且包含少量的乙烷、丙烷、氮和其他成分。 2.1.9 沸溢性油品 boil over 含水并在燃烧时具有热波特性的油品,如

4、原油、渣油、重油等。 2. 2 消防冷却水和灭火系统术语2.2.1 固定式消防冷却水系统 fixed water cooling fire systems 由固定消防水池 (罐) 、消防水泵、消防给水管网及储罐上设置的固定冷却水喷淋装置组成的消防冷却水系统。 2.2.2 半固定式消防冷却水系统 semifixedwater cooling fire systems 站场设置固定消防给水管网和消火栓,火灾时由消防车或消防泵加压,通过水带和水枪喷水冷却的消防冷却水系统。 2.2.3 移动式消防冷却水系统 mobile water cooling fire systerns 站场不设消防水源,火灾时

5、消防车由其他水源取水,通过车载水龙带和水枪喷水冷却的消防冷却水系统。 2.2.4 低倍数泡沫灭火系统 low-expansion foam fire extinguishing systems 发泡倍数不大于 20 的泡沫灭火系统。 2.2.5 固定式低倍数泡沫灭火系统 fixed low-expansion famfire extinguishing systems 由固定泡沫消防泵、泡沫比例混合器、泡沫混合液管道以及储罐上设置的固定空气泡沫产生器组成的低倍数泡沫灭火系统。 2.2.6 半固定式低倍数泡沫灭火系统 semi-fixed low-expansion foam fire exti

6、nguishing systems 储罐上设置固定的空气泡沫产生器,灭火时由泡沫消防车或机动泵通过水龙带供给泡沫混合液的低倍数泡沫灭火系统。 2.2.7 移动式低倍数泡沫灭火系统 mobile low-expansion foam tire extinguishing systems 灭火时由泡沫消防车通过车载水龙带和泡沫产生装置供应泡沫的低倍数泡沫灭火系统。 2.2.8 烟雾灭火系统 smoke fire extinguishing systems 由烟雾产生器、探测引燃装置、喷射装置等组成,在发生火灾后,能自动向储罐内喷射灭火烟雾的灭火系统。 2.2.9 干粉灭火系统 dry-powder

7、 fire extinguishing systems 由干粉储存装置、驱动装置、管道、喷射装置、火灾报警及联动控制装置等组成,能自动或手动向被保护对象喷射干粉灭火剂的灭火系统。 2. 3 油气生产设施术语 2.3.1 石油天然气站场 petroleum and gas station 具有石油天然气收集、净化处理、储运功能的站、库、厂、场、油气井的统称,简称油气站场或站场。 2.3.2 油品站场 oil station 具有原油收集、净化处理和储运功能的站场或天然汽油、稳定凝析油储运功能的站场以及具有成品油管输功能的站场。 2.3.3 天然气站场 natural gas station 具有

8、天然气收集、输送、净化处理功能的站场。 2.3.4 液化石油气和天然气凝液站场 LPG and NGL station 具有液化石油气、天然气凝液和凝析油生产与储运功能的站场。 2.3.5 液化天然气站场 liquefied natural gas(LNG)station 用于储存液化天然气,并能处理、液化或气化天然气的站场。 2.3.6 油罐组 a group of tanks 由一条闭合防火堤围成的一个或几个油罐组成的储罐单元。 2.3.7 油罐区 tank farm 由一个或若干个油罐组组成的储油罐区域。 2.3.8 浅盘式内浮顶油罐 internal f1oating roof tan

9、k with shallow plate 钢制浮盘不设浮舱且边缘板高度不大于 0.5m 的内浮顶油罐。 2.3.9 常压储罐 atmospheric tank 设计压力从大气压力到 6.9kPa(表压,在罐顶计) 的储罐。 2.3.10 低压储罐 low-pressure tank 设计承受内压力大于 6.9kPa 到 103.4kPa(表压,在罐顶计) 的储罐。 2.3.11 压力储罐 pressure tank 设计承受内压力大于等于 0.1MPa(表压,在罐顶计) 的储罐。 2.3.12 防火堤 dike 油罐组在油罐发生泄漏事故时防止油品外流的构筑物。 2.3.13 隔堤 dividi

10、ng dike 为减少油罐发生少量泄漏 (如冒顶) 事故时的污染范围,而将一个油罐组的多个油罐分成若干分区的构筑物。 2.3.14 集中控制室 control centre 站场中集中安装显示、打印、测控设备的房间。 2.3.15 仪表控制间 instrument control room 站场中各单元装置安装测控设备的房间。 2.3.16 油罐容量 nominal volume of tank 经计算并圆整后的油罐公称容量。 2.3.17 天然气处理厂 natural gas treating plant 对天然气进行脱水、凝液回收和产品分馏的工厂。 2.3.18 天然气净化厂 natura

11、l gas conditioning plant 对天然气进行脱硫、脱水、硫磺回收、尾气处理的工厂。 2.3.19 天然气脱硫站 natural gas sulphur removal station 在油气田分散设置对天然气进行脱硫的站场。 2.3.20 天然气脱水站 natural gas dehydration station 在油气田分散设置对天然气进行脱水的站场。 3 基本规定 3.1 石油天然气火灾危险性分类 3.1.1 目前,国际上对易燃物资的火灾危险性尚无统一的分类方法。国家标准建筑设计防火规范GBJ 1687 中的火灾危险件分类,主要是按当时我国石油产品的性能指标和产量构成确

12、定的。我国其他工程建设标准中的火灾危险性分类与建筑设计防火规范)GBJ 1687 基本一致,只是视需要适当细化。本标准的火灾危险性分类是在现行国家标准建筑设计防火规范易燃物质火灾危险性分类的基础上,根据我国石油天然气的特性以及生产和储运的特点确定的。 1 甲A类液体的分类标准。 在原规范原油和天然气工程设计防火规范 GB 5018393 中没有将甲类液体再细分为甲A和甲B,但在储存物品的火灾危险性分类举例中将37.8时蒸气压200kPa 的液体单列,并举例液化石油气和天然气凝液属于这种液体。在该规范条文说明中阐述了液化石油气和天然气凝液的火灾特点,并列举了以蒸气压 (38)200kPa 划分的

13、理由。本规范将甲类液体细分为甲A和甲B,并仍然延用37.8蒸气压200kPa 作为甲A类液体的分类标准,主要理由是: 1) 国家标准稳定轻烃 (又称天然气油)GB 90531998 规定, 1 号稳定轻烃的饱和蒸气压为74200kPa ,对2号稳定轻烃为 74kPa(夏) 或 88kPa(冬) 。饱和蒸气压按国家标准石油产品蒸气压测定 (雷德法) 确定,测试温度37.8。 2) 国家标准油气田液化石油气GB 9052.11998 规定,商业丁烷37.8时饱和蒸气压 (表压) 为不大于 485kPa 。蒸气压按国家标准液化石油蒸气压测定法 (LPG 法) GBT 660289确定。 3) 在 4

14、0时 C 5 和 C 4 组分的蒸气压:正戊烷为115.66kPa ,异戊烷为 151.3kPa ,正丁烷为377kPa ,异丁烷为 528kPa 。按本规范的分类标准,液化石油气、天然气凝液、凝析油 (稳定前) 属于甲A类,稳定轻烃 (天然气油) 、稳定凝析油属于甲B类。 4) 美国防火协会标准易燃与可燃液体规程NFPA 30 和美国石油学会标准石油设施电气装置物所分类推荐作法API RP500 将液体分为易燃液体、可燃液体和高挥发性液体。高挥发性液体指37.8温度下,蒸气压大于 276kPa(绝压) 的液体,如丁烷、丙烷、天然气凝液。易燃液体指闪点37.8,并且雷德蒸气压 276kPa的液

15、体,如汽油、稳定轻烃(天然汽油) ,稳定凝烃油。 2 原油火灾危险性分类。 GB 5018393 将原油划为甲、乙类。 1993 年以后,随着国内稠油油田的不断开发,辽河油田年产稠油 800 多万吨,胜利油田年产稠油 200 多万吨,新疆克拉玛依油田稠油产量也达到 200 多万吨,同时认识到稠油火灾危险性与正常的原油有着明显的区别。具体表现为闪点高、燃点高、初馏点高、沥青胶质含量高。 从稠油的成因可以清楚地知道,稠油 (重油) 是烃类物质从微生物发展成原油过程中的未成熟期的产物,其轻组分远比常规原油少得多。因此,引起火灾事故的程度同正常原油相比相对小,燃烧速度慢。中油辽河工程有限公司、新疆时代

16、石油工程有限公司、胜利油田设计院针对稠油的这些特点做了大量的现场取样化验分析工作。辽河油田的超稠油取样 (以井口样为主) 分析结果,闭口闪点大于 120的占 97,初馏点大于 180的大于 97;胜利油田的稠油闭口闪点大于 120的占 42,初馏点大于 180的占 33;新疆油田的稠油初馏点大于180的有 1 个样品即180,占 17。以上这类油品的闭口闪点处在火灾危险性丙类范围内,其中大多数超稠油的闭口闪点在火灾危险性分类中处于丙B类池围内。 因此,通过试验研究和技术研讨确定,当稠油或超稠油的闪点大于 120、初馏点大于 180时,可以按丙类油品进行设计。对于其他范围内的油品,要针对不同的操

17、作条件,如掺稀油情况、气体含量情况以及操作温度条件加以区别对待。同时,对于按丙类油品建成的设施,其随后的操作条件要进行严格限制。 美国防火协会标准易燃与可燃液体规范)NFPA 30 ,把原油定义为闪点低于 65.6且没有经过炼厂处理的烃类混合物。美国石油学会标准石油设施电气装置场所分类推荐作法 APIRP 500 ,在谈到原油火灾危险性时指出,由于原油是多种烃的混合物,其组分变化范围广,因而不能对原油做具体分类。由上述资料可以看出,稠油的火灾危险性分类问题比较复杂。我国近几年开展稠油火灾危险性研究,做了大量的测试和技术研讨,为稠油火灾危险性分类提供了技术依据,但由于研究时间还较短,有些问题,例

18、如,稠油掺稀油后的火灾危险性,还需加深认识和积累实践经验。所以对于稠油的火灾危险性分类,除闭口闪点作为主要指标外,增加初馏点作为辅助指标,具体指标是参照柴油的初馏点确定的。按本规范的火灾危险性分类法,部分稠油的火灾危险性可划为丙类。 3 操作温度对火灾危险性分类的影响。 在原油脱水、原油稳定和原油储运过程中,有可能出现操作温度高于原油闪点的情况。本规范修订时考虑了操作温度对火灾危险性分类的影响。这方面的要求主要依据下列资料: 1) 美国防火协会标准易燃与可燃液体规程NFPA 30总则甲指出,液体挥发性随着加热而增强,当级(闪点37.8至60)或级(闪点 60)液体受自然或人工加热,储存、使用或

19、加工的操作温度达到或超过其闪点时,必须有补充要求。这些要求包括对于诸如通风、离开火源的距离、筑堤和电气场所等级的考虑。 2) 美国石油学会标准石油设施电气装置场所分类推荐作法 APIRP 500 ,考虑操作温度对液体火灾危险性的影响,并将温度高于其闪点的易燃液体或类液体单独划分为挥发性易燃液体。 3) 英国石油学会石油工业典型操作安全规范亦考虑操作温度对液体火灾危险性的影响,级液体(闪点 2155) 和级液体(闪点大于55100)按照处理温度可以再细分为 (1) 、 (2) 、 (1) 、 (2) 级。 (1) 级或 (1) 级液体指处理温度低于其闪点的液体。 (2) 级或 (2) 级液体指处

20、理温度等于或高于其闪点的液体。 4) 国家标准石油化工企业设计防火规范 GB 5016092 (1999 年版) 明确规定,操作温度超过其闪点的乙类液体,应视为甲B类液体,操作温度超过其闪点的丙类液体,应视为乙A类液体。 4 轻柴油火灾危险性分类。 附录 A 提供了石油天然气火灾危险性分类示例,并针对轻柴油火灾危险性分类加了一段注,下面说明有关情况:从 2002 年 1 月 1 日起,我国实施了新的轻柴油产品质量国家标准,即轻柴油GB 2522000。该标准规定10号、5号、0号、10号、20号等五种牌号轻柴油的闪点指标为大于或等于55,比旧标准GB 2521994的闪点指标降低510,火灾危

21、险性由丙A类上升到乙B类。在用轻柴油储运设施若完全按乙B类进行防火技术改造,不仅耗资巨大,而且有些要求(例如,增加油罐间距)很难满足。根据近几年我国石油、石化和公安消防部门合作开展的研究,闪点小于60并且大于或等于55的轻柴油,如果储运设施的操作温度不超过40,正常条件挥发的烃蒸气浓度在爆炸下限的50以下,火灾危险性较小,火灾危害性(例如,热辐射强度)亦较低,所以其火灾危险性分类可视为丙类。 3.2 石油天然气站场等级划分 3.2.1 本条规定了确定石油天然气站场等级的原则,仍采用原规范第 3.0.3 条第 1 款的内容。有些石油天然气站场,如油气输送管道的各种站场和气田天然气处理的各种站场,

22、一般仅储存或输送油品或天然气、液化石油气一种物质。还有一些站场,如油气集中处理站可能同时生产和储存原油、天然气、天然气凝液、液化石油气、稳定轻烃等多种物质。但是这些生产和储存设施一般是处在不同的区段,相互保持较大的距离,可以避免火灾情况下不同种类的装置、不同罐区之间的相互干扰。从原规范多年执行情况看,生产和储存不同物质的设施分别计算规模和储罐总容量,并按其中等级较高者确定站场等级是切实可行的。 3.2.2 石油天然气站场的分级,根据原油、天然气生产规模和储存油品、液化石油气、天然气凝液的储罐容量大小而定。因为储罐容量大小不同,发生火灾后,爆炸威力、热辐射强度、波及的范围、动用的消防力量、造成的

23、经济损失大小差别很大。因此,油气站场的分级,从宏观上说,根据油品储罐、液化石油气和天然气凝液储罐总容量来确定等级是合适的。 1 油品站场依其储罐总容量仍分为五级,但各级站场的储罐总容量作了较大调整,这是参照现行的国家有关规范,并根据对油田和输油管道现状的调查确定的。目前,油田和管道工程的站场中已建造许多 100000m3 油罐,有些站、库的总库容达到几十万立方米,所以将一级站场由原来的大于 50000m3 增加到大于或等于 100000m3 。我国一些丛式井场和输油管道中间站上的防水击缓冲罐容积已达到 500m3 ,所以将五级站储罐总容量由不大于 200m3 增加到不大于 500m3 。二、三

24、、四级站场的总容量也相应调整。 成品油管道的站场一般不进行油品灌桶作业,所以油品储存总容量中未考虑桶装油品的存放量。在大中型站场中,储油罐、不稳定原油作业罐和原油事故罐是确定站场等级的重要因素,所以应计为油品储罐总容量,而零位罐、污油罐、自用油罐的容量较小,其存在不应改变大中型油品站场的等级,故不计入储存总容量。高架罐的设置有两种情况,第一种是大中型站场自流装车采用的高架罐,这种高架罐是作业罐,且容量较小,不计为站场的储存总容量;第二种是拉油井场上的高架罐,其作用是为保证油井连续生产和自流装车,这种高架罐是决定井场划为五级或四级的重要依据,其容量应计为站场油品储罐容量。同样道理,输油管道中间站

25、上的混油罐和防水击缓冲罐也是决定站场划为五级或四级的重要依据,其容量应计为站场油品储罐容量。另外,油气站场上为了接收集气或输气管道清管时排出的少量天然气凝液、水和防冻剂混合物设置的小型卧式容器,如果总容量不大于 30m3 ,可视为甲。类工艺容器。 2 天然气凝液和液化石油气储罐总容量级别的划分,参照现行国家标准建筑设计防火规范GBJ 16中有关规定,并通过对 6 个油田 18 座气体处理站、轻烃储存站的统计资料分析确定的。 6个油田液化石油气和天然气凝液储罐统计结果如下: 储罐总容量在 5000m3以上, 3 座,占 16.7;使用单罐容量有 150 、 200 、 700 、 1000m3。

26、 25015000m3, 5 座,占 27.8;使用单罐容量有 200 、 400 、 1000m3。 2012500m3, 1 座,占 5.6;使用单罐容量有 50 、 200m3。 200m3以下, 1 座,占 5.6;使用单罐容量有 30m3。 以上数字说明,按五个档次确定罐容量和站场等级,可满足要求。所以本次修订仍采用原规范液化石油气和天然气凝液站场的分级标准。 3.2.3 天然气站场的生产过程都是带压生产,天然气站场火灾危险性大小除天然气站场的生产规模外,还同天然气站场生产工艺过程的繁简程度有很大关系。相同规模和压力的天然气站场,生产工艺过程的繁简程度不同时,天然气站场的工艺装置数量

27、、储存的可燃物质、占地面积、火灾危险性等差别很大。生产规模为 50104m3d 含有脱硫、脱水、硫磺回收等净化装置的天然气净化厂和生产规模为 400104m3d 的脱硫站、脱水站的工艺装置数量、储存的可燃物质、占地面积都基本相当。因此,天然气站场的等级应以天然气净化厂的规模为基础,并考虑天然气脱硫、脱水站生产工艺的繁简程度。 天然气处理厂主要是对天然气进行脱水、轻油回收、脱二氧化碳、脱硫,生产工艺比较复杂。天然气处理厂的级别划分应与天然气净化厂一致。 4 区域布置 4.0.1 区域布置系指石油天然气站场与所处地段其他企业、建 (构) 筑物、居民区、线路等之间的相互关系。处理好这方面的关系,是确

28、保石油天然气站场安全的一个重要因素。因为石油天然气散发的易燃、易爆物质,对周围环境存在着发生火灾的威胁,而其周围环境的其他企业、居民区等火源种类杂而多,对其带来不安全的因素。因此,在确定区域布置时,应根据其周围相邻的外部关系,合理进行石油天然气站场选址,满足安全距离的要求,防止和减少火灾的发生和相互影响。 合理利用地形、风向等自然条件,是消除和减少火灾危险的重要一环。当一旦发生火灾事故时,可免于大幅度地蔓延以及便于消防人员作业。 4.0.2 石油天然气站场在生产运行和维修过程中,常有油气散发随风向下风向扩散,居民区及城镇常有明火存在,遇到明火可引燃油气逆向回火,引起火灾或爆炸。因此,石油天然气

29、站场宜布置在居民区及城镇的最小频率风向上风侧。其他产生明火的地方也应按此原则布置。 关于风向的提法,建国后一直沿用前苏联“主导风向”的原则,进行工业企业布置。即把某地常年最大风向频率的风向定为“主导风向,然后在其上风安排居民区和忌烟污的建筑物,下风安排工业区和有火灾、爆炸危险的建 (构) 筑物。实践证明,按“主导风向”的概念进行区域布置不符合我国的实际,在某些情况下它不但未消除火灾影响,还加大了火灾危险。 我国位于低中纬度的欧亚大陆东岸,特别是行星系的西风带被西部高原和山地阻隔,因而季风环流十分典型,成为我国东南大半壁的主要风系。我国气象工作者认为东亚季风主要由海陆热力差异形成,行星风带的季节

30、位移也对其有影响,加之我国幅员广大,地形复杂,在不同地理位置气象不同、地形不同,因而各地季风现象亦各有地区特征,各地区表现的风向玫瑰图亦不相同。一般同时存在偏南和偏北两个盛行风向,往往两风向风频相近,方向相反。一个在暖季起控制作用,一个在冷季起控制作用,但均不可能在全年各季起主导作用。在此场合,冬季盛行风的上风侧正是夏季盛行风的下风侧,反之亦然。如果笼统用主导风向原则规划布局,不可避免地产生严重污染和火灾危险。鉴于此,在规划设计中以盛行风向或最小风频的概念代替主导风向,更切合我国实际。 盛行风向是指当地风向频率最多的风向,如出现两个或两个以上方向不同,但风频均较大的风向,都可视为盛行风向(前苏

31、联和西方国家采用的主导风向,是只有单一优势风向的盛行风向,是盛行风向的特例) 。在此情况下,需找出两个盛行风向(对应风向)的轴线。在总体布局中,应将厂区和居民区分别设在轴线两侧,这样,工业区对居民区的污染和干扰才能较小。 最小风频是指盛行风向对应轴的两侧,风向频率最小的方向。因而,可将散发有害气体以及有火灾、爆炸危险的建筑物布置在最小风频的上风侧,这样对其他建筑的不利影响可减少到最小程度。 对于四面环山、封闭的盆地等窝风地带,全年静风频率超过 30的地区,在总体规划设计中,可将工业用地尽量集中布置,以减少污染范围;适当加大厂区和居民区的距离,并用净化地带隔开,同时要考虑到除静风外的相对盛行风向

32、或相对最小风频。 另外,对于其他更复杂的情况,在总体规划设计中,则需对当地风玫瑰图做具体的分析。 根据上述理论,在考虑风向时本规范摒弃了“主导风向”的提法,采用最小频率风向原则决定石油天然气站场与居民点、城镇的位置关系。 4.0.3 江河内通航的船只大小不一,尤其是民用船、水上人家,经常在船上使用明火,生产区泄漏的可燃液体一旦流入水域,很可能与上述明火接触而发生火灾爆炸事故,从而对下游的重要设施或建筑物、构筑物带来威胁。因此,当生产区靠近江河岸时,宜布置在重要建、构筑物的下游。 4.0.4 为了减少石油天然气站场与周围居住区、相邻厂矿企业、交通线等在火灾事故中的相互影响,规定了其安全防火距离。表4.0.4 中的防火距离

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1