ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:39.19KB ,
资源ID:4908317      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4908317.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(网络安全技术英文习题集网络安全技术.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

网络安全技术英文习题集网络安全技术.docx

1、网络安全技术英文习题集网络安全技术网络安全技术英文习题集Chapter 1 IntroductionANSWERS NSWERS TO QUESTIONS1.1 What is the OSI security architecture?The OSI Security Architecture is a framework that provides a systematic way of defining the requirements for security and characterizing the approaches to satisfying those requireme

2、nts. The document defines security attacks, mechanisms, and services, and the relationships among these categories.1.2 What is the difference between passive and active security threats?Passive attacks have to do with eavesdropping on, or monitoring, transmissions. Electronic mail, file transfers, a

3、nd client/server exchanges are examples of transmissions that can be monitored. Active attacks include the modification of transmitted data and attempts to gain unauthorized access to computer systems.1.3 Lists and briefly define categories of passive and active security attacks?Passive attacks: rel

4、ease of message contents and traffic analysis. Active attacks: masquerade, replay, modification of messages, and denial of service.1.4 Lists and briefly define categories of security service?Authentication: The assurance that the communicating entity is the one that it claims to be. Access control:

5、The prevention of unauthorized use of a resource (i.e., this service controls who can have access to a resource, under what conditions access can occur, and what those accessing the resource are allowed to do).Data confidentiality: The protection of data from unauthorized disclosure.Data integrity:

6、The assurance that data received are exactly as sent by an authorized entity (i.e., contain no modification, insertion, deletion, or replay).Nonrepudiation: Provides protection against denial by one of the entities involved in a communication of having participated in all or part of the communicatio

7、n.Availability service: The property of a system or a system resource being accessible and usable upon demand by an authorized system entity, according to performance specifications for the system (i.e., a system is available if it provides services according to the system design whenever users requ

8、est them).Chapter2 Symmetric Encryptionand Message ConfidentialityANSWERS NSWERS TO QUESTIONS2.1 What are the essential ingredients of a symmetric cipher?Plaintext, encryption algorithm, secret key, ciphertext, decryption algorithm.2.2 What are the two basic functions used in encryption algorithms?P

9、ermutation and substitution.2.3 How many keys are required for two people to communicate via a symmetric cipher?One secret key.2.4 What is the difference between a block cipher and a stream cipher?A stream cipher is one that encrypts a digital data stream one bit or one byte at a time. A block ciphe

10、r is one in which a block of plaintext is treated as a whole and used to produce a ciphertext block of equal length.2.5 What are the two general approaches to attacking a cipher?Cryptanalysis and brute force.2.6 Why do some block cipher modes of operation only use encryption while others use both en

11、cryption and decryption?In some modes, the plaintext does not pass through the encryption function, but is XORed with the output of the encryption function. The math works out that for decryption in these cases, the encryption function must also be used.2.7 What is triple encryption?With triple encr

12、yption, a plaintext block is encrypted by passing it through an encryption algorithm; the result is then passed through the same encryption algorithm again; the result of the second encryption is passed through the same encryption algorithm a third time. Typically, the second stage uses the decrypti

13、on algorithm rather than the encryption algorithm.2.8 Why is the middle portion of 3DES a decryption rather than an encryption?There is no cryptographic significance to the use of decryption for the secondstage. Its only advantage is that it allows users of 3DES to decrypt data encrypted by users of

14、 the older single DES by repeating the key.2.9 What is the difference between link and end-to-end encryption?With link encryption, each vulnerable communications link is equipped on both ends with an encryption device. With end-to-end encryption, the encryption process is carried out at the two end

15、systems. The source host or terminal encrypts the data; the data in encrypted form are then transmitted unaltered across the network to the destination terminal or host.2.10 List ways in which secret keys can be distributed to two communicating parties.For two parties A and B, key distribution can b

16、e achieved in a number of ways, as follows:(1)A can select a key and physically deliver it to B.(2)A third party can select the key and physically deliver it to A and B.(3)If A and B have previously and recently used a key, one party can transmit the new key to the other, encrypted using the old key

17、.(4)If A and B each has an encrypted connection to a third party C, C can deliver a key on the encrypted links to A and B.2.11 What is the difference between a session key and a master key?A session key is a temporary encryption key used between two principals. A master key is a long-lasting key tha

18、t is used between a key distribution center and a principal for the purpose of encoding the transmission of session keys. Typically, the master keys are distributed by noncryptographic means.2.12 What is a key distribution center?A key distribution center is a system that is authorized to transmit t

19、emporary session keys to principals. Each session key is transmitted in encrypted form, using a master key that the key distribution center shares with the target principal.ANSWERS NSWERS TO PROBLEMS2.1 What RC4 key value will leave S unchanged during initialization? That is, after the initial permu

20、tation of S, the entries of S will be equal to the values from 0 through 255 in ascending order.Use a key of length 255 bytes. The first two bytes are zero; that is K0 = K1 = 0. Thereafter, we have: K2 = 255; K3 = 254; K255= 2.2.2 If a bit error occurs in the transmission of a ciphertext character i

21、n 8-bit CFB mode, how far does the error propagate? Nine plaintext characters are affected. The plaintext character corresponding to the ciphertext character is obviously altered. In addition, the altered ciphertext character enters the shift register and is not removed until the next eight characte

22、rs are processed.2.3 Key distribution schemes using an access control center and/or a key distribution center have central points vulnerable to attack. Discuss the security implications of such centralization.The central points should be highly fault-tolerant, should be physically secured, and shoul

23、d use trusted hardware/software.Chapter 3 Public-Key Cryptography and Message AuthenticationANSWERS NSWERS TO QUESTIONS3.1 List three approaches to message authentication.Message encryption, message authentication code, hash function.3.2 What is message authentication code?An authenticator that is a

24、 cryptographic function of both the data to be authenticated and a secret key.3.3 Briefly describe the three schemes illustrated in Figture3.2.(a) A hash code is computed from the source message, encrypted using symmetric encryption and a secret key, and appended to the message. At the receiver, the

25、 same hash code is computed. The incoming code is decrypted using the same key and compared with the computed hash code. (b) This is the same procedure as in (a) except that public-key encryption is used; the sender encrypts the hash code with the senders private key, and the receiver decrypts the h

26、ash code with the senders public key. (c) A secret value is appended to a message and then a hash code is calculated using the message plus secret value as input. Then the message (without the secret value) and the hash code are transmitted. The receiver appends the same secret value to the message

27、and computes the hash value over the message plus secret value. This is then compared to the received hash code.3.4 What properties must a hash function have to be useful for message authentication?(1)H can be applied to a block of data of any size.(2)H produces a fixed-length output.(3)H(x) is rela

28、tively easy to compute for any given x, making both hardware and software implementations practical.(4)For any given value h, it is computationally infeasible to find x such that H(x) = h. This is sometimes referred to in the literature as the one-way property.(5)For any given block x, it is computa

29、tionally infeasible to find y x with H(y) =H(x).(6)It is computationally infeasible to find any pair (x, y) such that H(x) = H(y).3.5 In the context of a hash function, what is a compression function?The compression function is the fundamental module, or basic building block, of a hash function. The

30、 hash function consists of iterated application of the compression function.3.6 What are the principal ingredients of a public-key cryptosystem?Plaintext: This is the readable message or data that is fed into the algorithm as input. Encryption algorithm: The encryption algorithm performs various tra

31、nsformations on the plaintext. Public and private keys: This is a pair of keys that have been selected so that if one is used for encryption, the other is used for decryption. The exact transformations performed by the encryption algorithm depend on the public or private key that is provided as inpu

32、t. Ciphertext: This is the scrambled message produced as output. It depends on the plaintext and the key. For a given message, two different keys will produce two different ciphertexts. Decryption algorithm: This algorithm accepts the ciphertext and the matching key and produces the original plaintext.3.7 List and briefly define three uses of a public-key cryptosystem.Encryption/decryption: The sender encrypts a message with the recipients public key. Digital signature: The sender signs a message with its private key.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1