1、卫生统计学赵耐青习题答案习题答案第一章一、是非题1. 家庭中子女数是离散型的定量变量。答:对。2. 同质个体之间的变异称为个体变异。答:对。3. 学校对某个课程进行 1 次考试,可以理解为对学生掌握该课程知识的一次随机抽样。答:对。4. 某医生用某个新药治疗了 100 名牛皮癣患者,其中55 个人有效,则该药的有效率为55%。答:错。只能说该样本有效率为55或称用此药总体有效率的样本估计值为55%。5.已知在某个人群中,糖尿病的患病率为8%,则可以认为在该人群中,随机抽一个对象,其患糖尿病的概率为8%。答:对,人群的患病率称为总体患病率。在该人群中随机抽取一个对象,每个对象均有相同的机会被抽中
2、,抽到是糖尿病患者的概率为8。二、选择题1. 下列属于连续型变量的是 A 。A 血压 B 职业 C 性别 D 民族2. 某高校欲了解大学新生心理健康状况,随机选取了1000 例大学新生调查,这1000 例大学生新生调查问卷是 A 。A 一份随机样本 B 研究总体 C 目标总体 D 个体3. 某研究用 X 表示儿童在一年中患感冒的次数,共收集了1000 人,请问:儿童在一年中患感冒次数的资料属于 C 。A 连续型资料 B 有序分类资料 C 不具有分类的离散型资料 D 以上均不对4. 下列描述中,不正确的是 D 。A 总体中的个体具有同质性B 总体中的个体大同小异C 总体中的个体在同质的基础上有变
3、异D 如果个体间有变异那它们肯定不是来自同一总体5用某个降糖药物对糖尿病患者进行治疗,根据某个大规模随机抽样调查的研究结果得到该药的降糖有效率为85%的结论,请问降糖有效率是指 D 。A 每治疗100 个糖尿病患者,正好有85 个人降糖有效,15 个人降糖无效B 每个接受该药物治疗的糖尿病患者,降糖有效的机会为85%C 接受该药物治疗的糖尿病人群中,降糖有效的比例为85%D 根据该研究的入选标准所规定的糖尿病患者人群中,估计该药降糖有效的比例为85%三、简答题1. 某医生收治 200 名患者,随机分成2 组,每组100 人。一组用A 药,另一组用B 药。经过2 个月的治疗,A 药组治愈了90
4、人,B 组治愈了85 名患者,请根据现有结果评议下列说法是否正确,为什么a)A 药组的疗效高于B 药组。b)A 药的疗效高于B 药。答:a)正确,因为就两组样本而言,的确A 组疗效高于B 组。b) 不正确,因为样本的结果存在抽样误差,因此有可能人群的A 药疗效高于B 药,也可能人群的两药的疗效相同甚至人群B 药的疗效高于A 药,2. 某校同一年级的 A 班和B 班用同一试卷进行一次数学测验。经过盲态改卷后,公布成绩:A 班的平均成绩为80 分,B 班的平均成绩为81 分,请评议下列说法是否正确,为什么a)可以称A 班的这次考试的平均成绩低于B 班,不存在抽样误差。b)可以称A 班的数学平均水平
5、低于B 班。答:a) 正确,因为此处将A 班和B 班作为研究总体,故不存在抽样误差。b)不正确,因为这一次数学平均成绩只是两班数学成绩总体中的两个样本,样本的差异可能仅仅由抽样误差造成。3. 在某个治疗儿童哮喘的激素喷雾剂新药的临床试验中,研究者收集了300 名哮喘儿童患者,随机分为试验组和对照组,试验组在哮喘缓解期内采用激素喷雾剂,在哮喘发作期内采用激素喷雾剂扩展气管药;对照组在哮喘缓解期不使用任何药物,在哮喘发作期内采用扩展气管药物。通过治疗3 个月,以肺功能检查中的第1 秒用力呼吸率(FEV1/FRC1)作为主要有效性评价指标,评价两种治疗方案的有效性和安全性。请阐述这个研究中的总体和总
6、体均数是什么答:试验组的研究总体是接受试验组治疗方案的全体哮喘儿童患者在治疗3 个月时的FEV1/FRC1 值的全体。对照组的研究总体是接受对照组治疗方案的全体哮喘儿童患者在治疗3 个月时的FEV1/FRC1 值的全体。试验组对应的总体均数是接受试验组治疗方案的全体哮喘儿童患者在治疗3 个月时的FEV1/FRC1 的平均值;对照组对应的总体均数是接受对照组治疗方案的全体哮喘儿童患者在治疗3 个月时的FEV1/FRC1 的平均值。4. 请简述什么是小概率事件对于一次随机抽样,能否认为小概率事件是不可能发生的答:在统计学中,如果随机事件发生的概率小于或等于,则通常可以认为是一个小概率事件,表示该事
7、件在大多数情况下不会发生,并且一般可以认为小概率事件在一次随机抽样中不会发生,这就是小概率事件原理。小概率事件原理是统计学检验的基础。5. 变量的类型有哪几种请举例说明,各有什么特点答:(1) 连续型变量,可以一个区间中任意取值的变量,即在忽略测量精度的情况下,连续型变量在理论上可以取到区间中的任意一个值,并且通常含有测量单位。观察连续型变量所得到的数据资料称为计量资料(measurement data)。如例1-1 中的身高变量就是连续型变量,身高资料为计量资料。.(2) 离散型变量, 变量的取值范围是有限个值或者为一个数列。离散型变量的取值情况可以分为具有分类性质的资料和不具有分类性质的资
8、料,表示分类情况的离散型变量亦称分类变量(categorical variable)。观察分类变量所得到的资料称为分类资料(categorical data)。分类资料可以分为二分类资料和多分类资料,而多分类资料又分成无序分类资料和有序分类资料,二分类资料如症状指标分为感染或未感染,无序多分类资料(nominal data) 如血型可以分为A、B、AB 和O 型,有序多分类资料(ordinal data) 如病情指标分为无症状、轻度、中度和重度。第二章一、是非题1不论数据呈何种分布,都可以用算术均数和中位数表示其平均水平。答:错。只有资料满足正态或近似正态分布时计算算术均数是比较有统计学意义的
9、。2在一组变量值中少数几个变量值比大多数变量值大几百倍,一般不宜用算术均数表示其平均水平。答:对,可以采用中位数表示。3只要单位相同,用s 和用CV 来表示两组资料的离散程度,结论是完全一样的。答:错,标准差S 是绝对误差的一种度量,变异系数CV 是相对误差的一种度量,对于两组资料离散程度的比较,即使两组资料的度量单位相同,也完全有可能出现两个指标的结论是不同的。在实际应用时,选择离散程度的指标时,考虑其结果是否有研究背景意义。例如:一组资料为成人的身高观察值,另一组资料为2 岁幼儿的身高观察值,虽然可以用标准差S比较两组的离散程度,也不能认为这是错误的,但根本没有研究背景意义,相反选择变异系
10、数CV 比较两组资料的相对变异程度,这就有一定的研究背景意义。4描述200 人血压的分布,应绘制频数图。答:对。5. 算术均数与中位数均不容易受极值的影响。答:错。算术均数比中位数容易受到极值的影响。二、选择题1中位数是表示变量值 A 的指标。A 平均水平B 变化范围C 频数分布D 相互间差别大小2对于最小组段无确定下限值和(或)最大组段无确定上限值的频数分布表资料,宜用下列哪些指标进行统计描述 C _A 中位数,极差 B 中位数,四分位数间距C 中位数,四分位数范围 D 中位数,标准差3描述年龄(分8 组)与疗效(有效率)的关系,应绘制 A 。A线图 B. 圆图 C. 直方图 D. 百分条图
11、4、为了描述资料分布概况,绘制直方图时,直方图的纵轴可以为 D 。A 频数 B 频率 C 频率密度(频率/组距) D 都可以三、简答与分析题1 100 名健康成年女子血清总蛋白含量(g/L)如表2-14,试描述之。表2-12 100 名成年健康女子血清总蛋白含量(g/L) 答:制作频数表如下:_组段 频数 百分比 累积频数 累积百分比_64 3 3 66 5 8 68 8 16 70 11 27 72 25 52 74 24 76 76 10 86 78 7 93 80 6 99 84 1 100 变量 例数 均数 标准差 最小值最大值中位数25 百分位数75 百分位数x 100 2某医师测得
12、300 名正常人尿汞值(ng/L)如表2-15,试描述资料。表2-13 300 名正常人尿汞值(ng/L)尿 汞 例 数 累计例数 累计百分数(%)0 49 49 4 27 76 8 58 134 12 50 184 16 45 229 20 22 251 24 16 267 28 10 277 32 7 284 36 5 289 40 5 294 44 0 294 48 3 297 52 0 297 56 2 299 60 1 300 合计 300 答:根据资料给出统计描述的指标如下:例数 均数 标准差 最小值 最大值16 2 62对于同一的非负样本资料,其算数均数一定大于等于几何均数。答:
13、根据初等数学中的不等式1 21 2n nna a a a a an+ + + ,可以得到算数均数一定大于等于几何均数。常用的描述集中趋势的指标有哪些,并简述其适用条件。答:(1)算术均数:适用对称分布,特别是正态或近似正态分布的数值变量资料。(2)几何均数:适用于频数分布呈正偏态的资料,或者经对数变换后服从正态分布(对数正态分布)的资料,以及等比数列资料。(3)中位数:适用各种类型的资料,尤其以下情况:A 资料分布呈明显偏态;B 资料一端或两端存在不确定数值(开口资 料或无界资料);C资料分布不明。第三章一、 是非题1. 二项分布越接近 Poisson 分布时,也越接近正态分布。答:错。当二项
14、分布的 不太接近 0或者 1,随着的增大,n 和n(1 )均较大时,二项分布的X 的逐渐近似正态分布; n 较大, 较小,二项分布的X 近似总体均数为 = n 的 Poisson 分布,只有n较大、 较小并且n 较大时,二项分布的 X 既近似Poisson 分布又近似正态分布,其本质是当n 较大、 较小时二项分布的X 所近似的Poisson 分布在其总体均数 = n 较大时逼近正态分布。2. 从同一新生儿总体(无限总体)中随机抽样 200 人,其中新生儿窒息人数服从二项分布。答:对。因为可以假定每个新生发生窒息的概率 是相同的并且相互独立,对于随机抽取 200 人,新生儿窒息人数 X 服从二项
15、分布B(n, )。3. 在 n 趋向无穷大、总体比例趋向于0,且n 保持常数时的二项分布的极限分布是Poisson 分布。答:对。这是二项分布的性质。4. 某一放射物体,以一分钟为单位的放射性计数为 50,40,30,30,10,如果以5 分钟为时间单位,其标准差为 1605 。答:错。设i X 服从总体均数为 的 Poisson 分布,i = 1,2,3,4,5,并且相互独立。根据Poisson 分布的可加性, 1 2 3 4 5 X + X + X + X + X 服从总体均数为5 ,_其总体方差为5 ,本题 5 分钟的总体方差5 的估计值为50 + 40 + 30 + 30 +10 =
16、160,所以其标准差为160 。5. 一个放射性物体一分钟脉冲数为 20 次,另一个放射性物体一分钟脉冲数为50 次。假定两种放射性物体的脉冲性质相同,并且两种放射性物体发生脉冲是相互独立的,则这两种物体混合后,其一分钟脉冲数的总体均数估计值为70 次。答:对。根据Poisson 分布的可加性,这两种物体混合后的发生的脉冲数为1 2 X + X ,混合后一分钟脉冲数的总体均数估计值为20+5070 次。6. 一个放射性物体平均每分钟脉冲数为 5 次(可以认为服从Poisson 分布),用X 表示连续观察20 分钟的脉冲数,则X 也服从Poisson 分布。答:对,这是Poisson 分布的可加
17、性。7. 一个放射性物体平均每分钟脉冲数为 5 次(可以认为服从Poisson 分布),用X 表示连续观察20 分钟的脉冲数,则X 的总体均数和总体方差均为100 次。答:对。Poisson 分布的可加性原理。8. 用 X 表示某个放射性物体的每分钟脉冲数,其平均每分钟脉冲数为5 次(可以认为服从Poisson 分布),用Y 表示连续观察20 分钟的脉冲数,则可以认为Y 近似服从正态分布,但不能认为X 近似服从正态分布。答:对。因为Y 的总体均数为100,当比较小的时候,Poisson 分布是一个偏态的分布,但是当增大时,Poisson 分布会逐渐趋于对称。二、 选择题1. 理论上,二项分布是
18、一种 B。A 连续性分布 B 离散分布C 均匀分布 D 标准正态分布2. 在样本例数不变的情况下,下列何种情况时,二项分布越接近对称分布。 CA 总体率越大 B 样本率P 越大C 总体率越接近 D 总体率越小3. 医学上认为人的尿氟浓度以偏高为不正常,若正常人的尿氟浓度X 呈对数正态分布,Y = lgX , G 为X 的几何均数,尿氟浓度的95%参考值范围的界值计算公式是 A 。A lg 1( ) Y Y + S B + X G S C + X G S D lg 1( ) Y Y + S4. 设1 2 10 X , X , X 均 服 从 B(4, , 并 且 1 2 10 X , X , X
19、 相 互 独 立 。 令1 2 10 Y = X + X + X ,则 DA Y 近似服从二项分布 B Y 近似服从Poisson 分布C Y 近似服从正态分布 D Y B(40,5. 设1 2 10 X , X , X 均服从 Poisson ,并且 1 2 10 X , X , X 相互独立。令1 2 10 Y = (X + X + X ) /10,则 CA Y 近似服从B(10, B Y 服从Poisson(22)分布C Y 近似服从正态分布 D Y 服从Poisson分布三、 简答题1. 如果X 的总体均数为,总体标准差为,令Y a+bX,则可以证明:Y 的总体均数为a+b,标准差为b
20、。如果X 服从40 的Poisson 分布,请问:Y = X /2 的总体均数和标准差是多少答:总体均数=20,总体标准差= 40 / 2。2. 设X 服从40 的Poisson 分布,请问:Y = X /2 是否服从Poisson 分布为什么答:不是的。因为Y = X /2 的总体均数=20,不等于总体方差10。3. 设X 服从40 的Poisson 分布,可以认为X 近似服从正态分布。令Y = X /10,试问:是否可以认为Y 也近似服从正态分布答:正态分布的随机变量乘以一个非0 常数仍服从正态分布,所以可以认为Y 也近似服从正态分布。4. 设X 服从均数为的 Poisson 分布。请利用
21、两个概率之比:P(X +1) / P(X ),证明:当x 时,概率P(X )随着X 增大而减小。答:1( 1)/( ) ( )/ /( 1)( 1)! !x xP X x P X x e e xx x += + = = = +, 显然, 当x 1 时,对应x +1 +,所以P(X = x +1) / P(X = x) 1,说 明 概 率 P(X ) 随 着 X 增 大 而 增 加 ; 当 X 时 , 则( 1)/( ) 11P X x P X xx x = + = = 时,概率P(X )随着X 增大而减小。5. 已知某饮用水的合格标准是每升水的大肠杆菌数2 个,如果随机抽取1 升饮用水,检测出
22、大肠杆菌数的95参考值范围是多少(提示考虑合格标准的总体均数最大值为2 个/L,求95参考值范围)。答:由于合格标准的总体均数最大值为2 个/L,对于正常而言,大肠杆菌数越少越好,所以这是单侧参考值范围。即求满足累计概率的不等式20 0( | 2) 2 !X X kk kP k ek = = = = 的最大X 的解。X 0 1 2 3 4 5 6P(X ) 0( )XkP k= 根据上述计算得到 X 的95参考值范围是 X 5个/L。第四章一、是非题1、设 X 的总体均数为,则样本均数X 的总体均数也为。答:对。经随机抽样得到的样本均数X 的总体均数也为。2、设 X 的总体方差为2,则样本均数
23、X 的总体方差也为2。答:错。经随机抽样后得到的样本均数X 的总体方差为2/n。3、设 随 机 变 量1, , n X X 均服从 B(1, ) ,n 很大时,则11 niiX Xn = 近似服从N( , (1 ) / n)答:对。4、某研究者做了一个儿童血铅浓度的流行病学调查,共调查了 1000 人,检测了每个人血铅浓度。虽然血铅检浓度一般呈非正态分布,但由于该研究样本量很大,可以认为这些血铅浓度近似服从正态分布。答:错。血铅浓度的分布与样本量是否很大无关,如果样本量充分大时,血铅浓度的样本均数的分布近似正态分布。5、某研究者做了一个儿童血铅浓度的流行病学调查,共调查了 1000 人,检测了
24、每个人血铅浓度,计算这1000 人的血铅平均浓度。对于现有的1000 人的血铅浓度资料,可以认为该资料的样本均数近似服从正态分布。答: 错。样本均数的概率分布是指随机抽样前将要随机抽取的样本,其样本均数近似服从某个概率分布,样本量很大时,样本均数逼近正态分布。对于这个资料而言,这是已经完成随机抽样的资料,这个资料的样本均数只是一个数,不存在服从哪种分布的问题。6、某研究者做了一个儿童血铅浓度的流行病学调查,已知血铅测量值非正态分布,计划调查1000 人,并将计算1000 人的血铅浓度的样本均数,由于该研究样本量很大,可以认为随机抽样所获得血铅浓度的样本均数将近似服从正态分布。答:对。如果从某个
25、均数为,标准差为的非正态分布的总体中抽样,只要样本量足够大,则样本均数 X 的分布也将近似于正态分布N(, 2 / n)。二、选择题1、以下方法中唯一可行的减小抽样误差的方法是_B_。A、减少个体变异 B、增加样本量C、设立对照 D、严格贯彻随机抽样的原则2、X S 表示_C_。A、总体均数的离散程度 B、总体标准差的离散程度C、样本均数的离散程度 D、样本标准差的离散程度3、设连续性随机变量X的总体均数为,从X总体中反复随机抽样,随样本量n 增大,XXS将趋于_D_。A、X 的原始分布 B、正态分布C、均数的抽样分布 D、标准正态分布4、在均数为 ,标准差为 的正态总体中随机抽样,理论上|
26、X | _B_的可能性为5%。A、 B X C、 2,v t S D X S5、下面关于标准误的四种说法中,哪一种是不正确_C_。A、标准误是样本统计量的标准差B、标准误反映了样本统计量的变异C、标准误反映了总体参数的变异D、标准误反映了抽样误差的大小6、变量 X 偏离正态分布,只要样本量足够大,样本均数_C_。A、偏离正态分布 B、服从F 分布C、近似正态分布 D、服从t 分布三、简答题1、样本均数的抽样误差定义是什么答:样本均数的抽样误差是指样本均数和总体均数间的差异,但同时可以表现为从同一总体中多次随机抽样所得的样本均数间的差异,通常用样本均数的标准误度量平均的抽样误差大小。2、估计样本
27、均数的平均抽样误差的统计量是什么答:是样本均数的标准差,即样本均数的标准误。3、简述样本均数的抽样误差的规律。答:样本均数的标准误的理论值为x n = ,而其估计值为XS Sn= ;4、简述 t 分布、F 分布,2 分布曲线的特征与自由度的关系。答:t 分布是一簇以0 为中心,左右对称的单峰曲线,随着自由度的增加,t 分布曲线将越来越接近于标准正态分布曲线,当自由度为无穷大时,t 分布就是标准正态分布。t 分布的曲线下两侧尾部的面积可以通过查对应自由度下的t 分布界值表得到。2 分布的图形为一簇单峰正偏态分布曲线,且随着自由度的增加,正偏的程度越来越小。2 分布的曲线下右侧尾部的面积可通过查2
28、 界值表得到。F 分布的特征有:(1)F 分布有两个自由度,F 的取值范围为0。(2)F 分布为一簇单峰正偏态分布曲线,与两个自由度有关。(3)每一对自由度下的F 分布曲线下面积,见方差分析用F 界值表(附表4),横标目为第一自由度,纵标目为第二自由度,表中分别给出了概率为 和 时的F 界值,记为, , F 。t 分布,2 分布和F 分布是三种没有未知参数,只有自由度的概率分布,常用于抽样研究中,故称为三种常见的抽样分布。5、简述正态分布、t 分布、F 分布、2 分布之间的关系。答:(1)若随机变量 X 服从于正态分布N (, 2 ),那么从总体中随机抽取的样本,其样本均数 X 将服从于正态分
29、布 ( , 2 ) X N 。令Z 为对X 进行标准化变换的结果,Z 将服从于标准正态分布,即X /Z X Xn = = 服从标准正态分布。(2)自由度为1 的2 分布可以通过将服从标准正态分布的变量平方得到。(3)若随机变量X1 和X2 分别为服从自由度为v1和v2 的2 分布,并且相互独立,则比值21 1 122 2 2 /F XX = = /服从自由度为(v1,v2)的F 分布(F-distribution)。6、目前一般的统计软件(如 SAS,SPSS 和Stata)均能随机模拟产生服从均匀分布、正态分布、二项分布的随机数。利用这些程序,可以生成指定参数下的随机数据,这种产生随机数的方
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1