ImageVerifierCode 换一换
格式:DOCX , 页数:6 ,大小:107.91KB ,
资源ID:4790953      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4790953.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(雅可比矩阵.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

雅可比矩阵.docx

1、雅可比矩阵雅可比(Jacobian)矩阵2008-12-05 11:29 在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。 还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个群簇,曲线可以嵌入其中。它们全部都以数学家卡尔雅可比命名;雅可比矩阵雅可比矩阵的重要性在于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。假设F:RnRm 是一个从欧式n维空间转换到欧式m维空间的函数。这个函数由m个实函数组成: y1(x1,.,xn), ., ym(x1,.,xn). 这些函数的偏导数(如果存在)可以组成一个m行n

2、列的矩阵,这就是所谓的雅可比矩阵:此矩阵表示为:,或者 这个矩阵的第i行是由梯度函数的转置yi(i=1,.,m)表示的如果p是Rn中的一点,F在p点可微分,那么在这一点的导数由JF(p)给出(这是求该点导数最简便的方法)。在此情况下,由F(p)描述的线性算子即接近点p的F的最优线性逼近,x逼近与p例子由球坐标系到直角坐标系的转化由F函数给出:R 0, 0,2 R3此坐标变换的雅可比矩阵是R4的f函数:其雅可比矩阵为:此例子说明雅可比矩阵不一定为方矩阵。在动态系统中考虑形为x = F(x)的动态系统,F : Rn Rn。如果F(x0) = 0,那么x0是一个驻点。系统接近驻点时的表现通常可以从J

3、F(x0)的特征值来决定。雅可比行列式如果m = n,那么F是从n维空间到n维空间的函数,且它的雅可比矩阵是一个方块矩阵。于是我们可以取它的行列式,称为雅可比行列式。在某个给定点的雅可比行列式提供了F在接近该点时的表现的重要信息。例如,如果连续可微函数F在p点的雅可比行列式不是零,那么它在该点具有反函数。这称为反函数定理。更进一步,如果p点的雅可比行列式是正数,则F在p点的取向不变;如果是负数,则F的取向相反。而从雅可比行列式的绝对值,就可以知道函数F在p点的缩放因子;这就是为什么它出现在换元积分法中。例子设有函数F : R3 R3,其分量为:则它的雅可比行列式为:从中我们可以看到,当x1和x

4、2同号时,F的取向相反;该函数处处具有反函数,除了在x1 = 0和x2 = 0时以外。雅可比矩阵维基百科,自由的百科全书跳转到: 导航, 搜索在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。还有,在代数几何中,代数曲线的雅可比量表示雅可比簇:伴随该曲线的一个代数群,曲线可以嵌入其中。它们全部都以数学家卡尔雅可比命名;英文雅可比量Jacobian可以发音为ja ko bi n或者 ko bi n。隐藏 1 雅可比矩阵 o 1.1 例子 o 1.2 在动力系统中 2 雅可比行列式 o 2.1 例子 3 参看 4 外部连接 编辑 雅可比矩阵雅可比矩阵的重要性在

5、于它体现了一个可微方程与给出点的最优线性逼近。因此,雅可比矩阵类似于多元函数的导数。假设F:RnRm 是一个从欧式n维空间转换到欧式m维空间的函数。这个函数由m个实函数组成: y1(x1,.,xn), ., ym(x1,.,xn). 这些函数的偏导数(如果存在)可以组成一个m行n列的矩阵,这就是所谓的雅可比矩阵:此矩阵表示为:,或者 这个矩阵的第i行是由梯度函数的转置yi(i=1,.,m)表示的如果p是Rn中的一点,F在p点可微分,那么在这一点的导数由JF(p)给出(这是求该点导数最简便的方法)。在此情况下,由F(p)描述的线性算子即接近点p的F的最优线性逼近,x逼近与p编辑 例子由球坐标系到

6、直角坐标系的转化由F函数给出:R 0, 0,2 R3此坐标变换的雅可比矩阵是R4的f函数:其雅可比矩阵为:此例子说明雅可比矩阵不一定为方矩阵。编辑 在动力系统中考虑形为x = F(x)的动力系统,F: Rn Rn。如果F(x0) = 0,那么x0是一个驻点。系统接近驻点时的表现通常可以从JF(x0)的特征值来决定。编辑 雅可比行列式如果m = n,那么F是从n维空间到n维空间的函数,且它的雅可比矩阵是一个方块矩阵。于是我们可以取它的行列式,称为雅可比行列式。在某个给定点的雅可比行列式提供了F在接近该点时的表现的重要信息。例如,如果连续可微函数F在p点的雅可比行列式不是零,那么它在该点附近具有反函数。这称为反函数定理。更进一步,如果p点的雅可比行列式是正数,则F在p点的取向不变;如果是负数,则F的取向相反。而从雅可比行列式的绝对值,就可以知道函数F在p点的缩放因子;这就是为什么它出现在换元积分法中。编辑 例子设有函数F: R3 R3,其分量为:则它的雅可比行列式为:从中我们可以看到,当x1和x2同号时,F的取向相反;该函数处处具有反函数,除了在x1 = 0和x2 = 0时以外。Welcome ToDownload !欢迎您的下载,资料仅供参考!

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1