ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:104.43KB ,
资源ID:4784569      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4784569.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高速铁路牵引供电系统组成复习课程.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高速铁路牵引供电系统组成复习课程.docx

1、高速铁路牵引供电系统组成复习课程高速铁路牵引供电系统(组成)高速铁路牵引供电系统电气化铁路的组成由于电力机车本身不带原动机,需要靠外部电力系统经过牵引供电装置供 给其电能,故电气化铁路是由电力机车和牵引供电系统组成的。牵引供电系统主要由牵引变电所和接触网两部分组成, 所以人们又称电力机车、牵引变电所和接触网为电气化铁道的三大元件。一、电力机车(一) 工作原理电力机车靠其顶部升起的受电弓和接触网接触获取电能。电力机车顶部都 有受电弓,由司机控制其升降。受电弓升起时,紧贴接触网线摩擦滑行,将电 能引入机车,经机车主断路器到机车主变压器,主变压器降压后,经供电装置 供给牵引电动机,牵引电动机通过传动

2、机构使电力机车运行。(二) 组成部分电力机车由机械部分(包括车体和转向架)、电气部分和空气管路系统构 成。车体是电力机车的骨架,是由钢板和压型梁组焊成的复杂的空间结构,电 力机车大部分机械及电气设备都安装在车体内,它也是机车乘务员的工作场 所。转向架是由牵引电机把电能转变成机械能,便电力机车沿轨道走行的机械 装置。它的上部支持着车体,它的下部轮对与铁路轨道接触。电气部分包括机车主电路、辅助电路和控制电路形成的全部电气设备,在 机车上占的比重最大,除安装在转向架中的牵引电机之外,其余均安装在车 顶、车内、车下和司机室内。空气管路系统主要执行机车空气制动功能,由空气压缩机、气阀柜、制动 机和管路等

3、组成(三) 分类干线电力牵引中,按照供电电流制分为:直流制电力机车和交流制电力机 车和多流制电力机车。交流机车又分为单相低频电力机车 (25Hz或16 2/3Hz)和 单相工频(50Hz)电力机车。单相工频电力机车,又可分为交-直传动电力机车和 交一直一交传动电力机车。二、牵引变电所牵引变电所的主要任务是将电力系统输送来的 110kV三相交流电变换为27.5 (或55) kV单相电,然后以单相供电方式经馈电线送至接触网上,电压变 化由牵引变压器完成。电力系统的三相交流电改变为单相,是通过牵引变压器 的电气接线来实现的。牵引变电所通常设置两台变压器,采用双电源供电。以 提高供电的可靠性。变压器的

4、接线方式目前采用的有三相 Yd11接线,单相V/V接线,单相接线以及三相-两相斯科特变压器。牵引变电所还设置有串联和并联 的电容补偿装置,用以改善供电系统的电能质量,减少牵引负荷对电力系统和 通信线路的影响。三、牵引供电回路电力牵引供变电系统是指从电力系统接受电能,通过变压,变相后,向电 力机车供电的系统。牵引供电回路是由牵引变电所、馈电线、接触网、电力机 车、钢轨、地或回流线构成。另外还有分区亭、开闭所、自耦变压器站等。电力牵引系统中的开闭所,实际上是起配电作用的开关站开闭所就是高压 开关站,实际上从严格意义上讲是 高压配电”占,仅仅起配电作用,实现环网 供电、双路互投等功能。当枢纽地区的供

5、电,分为“由里向外供”和“由外向里供”两种方式,前者在枢 纽内设置牵引变电所。后者在枢纽内不设牵引变电所,为了增加枢纽地区供电 的可靠性和缩小事故的影响范围,一般设开闭所。 AT供电方式时,供电臂较长,在供电臂中部也设开闭所。开闭所应有来自不同牵引变电所的(单线区 段)或同一牵引变电所的不同馈线段(复线区段)的两回进线。开闭所应尽量设置在枢纽地区的负荷中心处,以减少馈线的长度和馈线与 接触网的交叉干扰。(二)分区亭(SP为了增加供电的灵活性,提高运行的可靠性,在两个牵引变电所的供电区 间常加设分区亭。分区亭常用于牵引网为双边供电,或复线区段牵引网为单边 供电,但上下行接触网在末端并联时。这时,

6、分区亭起到平时将两个供电臂或 上下行接触网联络起来的作用,这样,当事故发生时,可缩小停电范围和实现 越区供电。(三) 自耦变压器站电力牵引供电系统如采用自耦变压器供电方式时,在沿线每隔 10-15公里设置一台自耦变压器。设置时尽量将自耦变压器设于沿铁路的各站场上。同 时,尽量与分区亭、开闭所合并,以便于运行管理。(四) 牵引网牵引网是由馈线、钢轨回流线、接触网组成的双导线供电系统,完成对电 力机车的送电任务。BT供电方式时,还要有回流线。AT供电供电方式时,还有 正馈线和保护线。馈线:接在牵引变电所牵引母线和接触网之间的导线,即将电能由牵引变 电所引向电气化铁路。接触网:一种特殊的输电线,架设

7、在铁路上方,机车受电弓与其磨擦受 电。回流线:牵引变电所处的横向回流线,它将轨或与轨平行的其它导线与牵 引变压器指定端子相联。分相绝缘器(电分相):串在接触网上,目的是把两相不同的供电区分 开,并使机车光滑过渡,主要用在牵引变电所出口处和分区处。分段绝缘器(电分段):分为纵向电分段和横向电分段,前者用线路接触 网上,后者用于站场各条接触网之间。通过其上的隔离开关将有关接触网进行 电气连通或断开,以保证供电的可靠性、灵活性和缩小停电范围等。供电分区:正常供电时,由牵引变电所馈线到接触网末端的一段供电线 路,也称为供电区。电气化铁路的供电方式一、电力系统对牵引变电所的供电方式电力系统向牵引变电所供

8、电的方式可分为单电源供电,双电源供电和混合 供电。当同一电气化区段有不同那个的电力系统功能供电时,在牵引网的分界 处,应设置分相电分段而不应并联。牵引变电所设置两台变压器,它要求 双电源供电1.牵引变电所一、牵引变电所高压进线的主接线方案(一) 牵引变电所主接线的要求1、 牵引变压器的接线方式不同,对主接线的影响较大。2、 在满足可靠性的情况下,应尽量采用简单的接线形式,一般一双 T接 线为主。3、 双T接线虽然要求双回路进线,但可根据电气化铁路的重要程度和运量大小而采用手动投入或自动投入备用回路。当变电所的双回路进线中,主回 路发生故障时,备用回路应投入。当采用手动投入时,将有一段停电时间(

9、几 数分钟到几十分钟),但可使主接线简化,考虑到 110kV线路故障率较低,而且220 kV及更高系统逐步形成之情况下,这种接线方式得到了普遍应用。4、 对于重要电气化区段,可采用自动投入或双回路主供。5、 接触网的故障率较高,要求27.5 kV侧馈线断路器能承受较高的跳闸 次数或有足够的备用。(二) 单母线分段接线1、单母线分段接线当牵引变电所除了 110kV两回电源引入线外,还有别的引出线的时候,通 常采用此种方式。正常运行时,分段断路器闭合,两母线并列运行,电源回路 和同一负荷的馈线应交错连接在不同的分段母线上,分段断路器既能通过穿越 功率,又可在必要的时候将母线分成两段,这样,当母线检

10、修时,停电范围可 缩小一半;母线故障时,分段断路器自动跳闸,将故障段母线断开,非故障段 母线及其线路仍照常工作,仅使故障段母线连接的线路停电。单母线分段的接线,广泛用于城市电牵引变电所和 110KV电源进线回路较少的电牵引供电系统。2、单母线带旁路母线接线单母线分段的接线虽然有上述优点,但是,还是存在断路器检修或故障时 将使有关回路停电的缺陷,为此,增设一组旁路母线,组成带旁路母线的 单母线接线即可解决这一矛盾。(三)桥型接线当110KV侧有两回进线且需要穿越功率时,采用桥型接线1、内桥接线内桥接线中带有隔离开关构成的外跨条,作为检修桥断路器时旁路用。该 接线的特点是线路中有一回故障,不影响供

11、电。但变压器故障时,造成线路中 断。考虑到变压器故障率比进线故障少,因此这种接线可加强牵引负荷供电的 可靠性而对电力系统不会带来多大影响,目前采用较多。由于解裂变压器也会 造成线路中断,所以如需经常操作主变压器的场合,不宜采用内桥接线。2、外桥接线该接线的特点是变压器故障不影响线路,变压器的投入和切除方便,线路穿越功率只经过桥断路器,但线路故障时影响一台变压器的供电,这种接线往(四)双T接线双T接线是目前采用比较普遍的一种接线方式,它在变电所要求两回进线 时采用。一般情况下,其中一回引自电源点的专用间隔,另一回进线可从电力 系统的各供电线路上连接。双 T接线比上述两种接线形式都简单,双回进线都

12、 在供电要求不高的场合,采用一回助攻,另一回备用。若两回进线都能作主供 回路,并能作为互为备用,则可消去外跨条,使接线更为简单。在供电要求高 的场合,应优先采用两回进线都能作为主供的方案。第五节 高速铁路牵引供电系统介绍由于电力机车功率大,拉的多,跑的快,世界各国的高速铁路几乎都采用 电力机车牵引。电力机车与蒸汽机车和内燃机车不同,它本身不带能源,必须 由外部供应电能。为了给电力机车供应电能,需要在铁路沿线架设一套牵引供 电系统。高速铁路的牵引供电系统,与常速铁路的牵引供电系统不同,它的供 电能力和供电可靠性必须满足高速列车运行的要求。自1964年10月1日,日本建成世界上第一条高速铁路以来,

13、经过几十年 的实践和发展,各国高速铁路的牵引供电系统都有了很大的改进,达到了很高 的水平,而且都各具特色。最具有代表性的是日本、法国和德国高速铁路的牵 引供电系统。高速铁路的牵引供电系统主要包括牵引供电和接触网两大部分。F面就其采用的主要技术标准做一简单的介绍。1 牵引供电部分(1)牵引供电方式:高速铁路要求接触网受流质过高,分段和分相点数量 少。目前各国大多采用自耦变压器(AT)供电方式和带回线的直接(RT)供电 方式。自耦变压器(AT)供电方式是每隔10km左右在接触网与正馈线之间并 联接入一台自耦变压器,其中性点与钢轨相连。自耦变压器将牵引网的供电电 压提高一倍,而供给电力机车的电压仍为

14、 25 kV,如图所示。带回线的直接(RT)供电方式是在接触网支柱上架设一条与钢轨并联的回流线,如图所示,利用接触网与回流线之间的互感作用,使钢轨中的电流尽可能地由回流线流回 牵引变电所,因而能部分抵消接触网对邻近通信线路的干扰。1/2 /1/2 /自耦变压器(AT供电方式:0 0rr1INF)带回线的直接(RD供电方式日本、法国采用AT供电方式;德国、意大利和西班牙采用 RT供电方式。 AT供电方式的优点是:供电质量高,变电所数量少,便于牵引变电所选址和电力 部门的配合,牵引变电所间距大、分相点少。因此,便于高速列车运行,防干扰 效果也好。我国京沪高速铁路牵引供电优先采用 2X25kV (A

15、T)供电方式。(2 )电源电压等级:高速铁路负荷电流大,对电力系统的不平衡影响也 大。为了减少对电力系统的影响,高速铁路一般都采用较高的电源电压。日本 采用154kV、220kV和275kV三种电压等级,法国采用 225kV电压等级,德国 采用110kV电压等级,意大利采用 130kV电压等级,西班牙采用 132kV和220kV两种电压等级。(3)接触网电压:接触网的电压对电力机车功率发挥及机车运行速度有很 大影响,而且直接关系到牵引供电设备技术参数的选定和供电系统的工程投 资,各国都非常重视这一技术标准。日本接触网的标准电压为 25kV,最高电压为30kV,最低电压为 22.5kV。法国分别

16、为 25kV、27.5kV和18kV。德国分别 为15kV、17kV和12kV。西班牙分别为25kV、27.5kV和19kV。意大利采用直 流供电,分别为3kV、3.6kV和2kV。我国京沪高速铁路接触网的标称电压为 25kV,长期最高电压拟定为 27.5kV,短时(5min)最高电压为29kV,设计最 低工作电压为20kV。(4) 牵引变压器接线形式:牵引变压器是牵引供电系统中最重要的设备。 它对牵引供电系统和工程投资起决定性的影响,不同类型的牵引变压器对电力 系统产生不同的不平衡影响。日本采用斯科特接线和变形伍德桥接线三相变压 器。法国、德国、意大利和西班牙采用单相变位器。单相变压器的优点

17、是变压 器容量大、利用率高、经济效果好,最适合在高速铁路上应用。我国京沪高速 铁路应优先采用单相变压器。(5) 牵引变电所继电保护和自动控制装置:日本、法国、德国及西班牙高 速铁路的牵引变电所均按无人值班设计,采用运动装置在电力调度中心监控。 牵引变电所的继电保护和自动控制系统仍采用传统的控制保护盘方式,微机控 制保护和全部自动化等技术都还没有采用。但在保护系统的配置、继电器的特 性、控制回路的联动等方面比较先进,系统的安全性和可靠性也比较高。(6) 电力调度和运动系统:日本列车运行指挥中心集列车、车辆、信号、 牵引供电、防灾报警、旅客服务等多种业务调度为一体,构成一个综合调度处 理系统。电力

18、调度及运动是其中的一个子系统。法国高速铁路的综合调度系统 由行车调度和电力调度组成。德国和西班牙高速铁路的牵引供电调度及运动系 统则是一个设在调度中心的独立系统。由调度所对高速线上所有开关设备和接 触网柱上开关进行遥控。为了便于列车调度指挥,电力调度和运动系统集中设 在行车调度室内。为2 X27.5kV或27.5kV ;接触网额定电压为 25kV,长期最高电压为27.5kV,短时(5min)最高电压为29kV,设计最低工作电压为20kV。9.接触网采用上、下行同相单边供电,供电臂末端设分区所,在正常情 况下实现上、下行接触网并联供电,在事故情况下实现越区供电,允许全部列 车在减速条件下通过。当

19、采用 AT供电方式时,AT所处的上、下行接触网也实 行并联。10.供电设备的容量一般按近期客运量的高峰小时牵引负荷进行选择;接 触网上行或下行单独供电时,应满足最低工作电压要求。11.负序和谐波对电力系统的影响应符合有关标准的规定。二、牵引网供电方式京沪高速铁路是由不同速度等级的动车组混跑的客运专线(在近、远期逐 步加大350km/h及以上动车组数量和运行范围),最高速度为 350380km/h的 高速动车组采用大功率流线型交-直-交动车组。AT供电方式具有适应高电能传输的能力,同时可以降低对接触悬挂载流量 的要求和减轻牵引网电流密度,并有利于大运量客运专线接触网的轻型化和系 统匹配设计。牵引

20、网供电方式采用 AT供电方式后在供电能力、减少电分相、改善电磁环境和降低外部电源投资等方面的优势均比较明显,对于京沪高速铁 路长距离、高速度、高密度和重负荷的情形尤其适宜;因此高速正线的牵引供 电系统应采用2疋5kV AT供电方式,枢纽地区高中速联络线、动车组走行线和 动车段(所)等采用125kV带回流线的直接供电方式。三、 牵引变电所、开闭所、分区所和 AT所分布在京沪高速铁路的电气化工程中,牵引变电所 (SS)、开闭所(SSP)、分区所(SP)和AT所(ATP)的分布方案除根据上述主要设计原则及技术条件外,还应考 虑负荷特点、变电设施规模和牵引网结构等。由于京沪高速铁路的高、中速列 车均采

21、用交-直-交动车组,列车在各种工况下的功率因数较高,牵引网末端电 压水平不再是制约牵引变电所间距的主要因素;而牵引网各导体的载流量和电 力系统的负序承受能力成为限制牵引变电所间距的主要因素。根据前期牵引计算及方案论证的结论,京沪高速铁路全线分别在李营(北 京动车段)、魏善庄、豆张庄、华苑、唐官屯、沧州、东光、德州、禹城、济 南、泰山、王庄、东郭、周营、徐州、桃沟、固镇、蚌埠、桑涧、滁州、南京 南、下蜀、丹阳、郑陆、无锡、昆山和虹桥设 27座牵引变电所,在每座牵引变电所内均不设自耦变压器。在AT供电区段的分区所内设置上、下行自耦变压器,且自耦变压器互为 备用;在AT供电区段内,各牵引变电所的左右

22、供电臂中间附近共设 50处AT所,AT所内设置上、下行自耦变压器,且自耦变压器互为备用。在北京南站和 天津西站附近各设1处分区所兼开闭所。在京沪高速铁路的电气化工程中,除新建李营牵引变电所为直接供电方式 的变电所外,其余均为 AT供电方式的牵引变电所。高速正线接触网除北京 南魏善庄牵引变电所和在本线初期虹桥牵引变电所虹桥段采用带回流线的 直接供电方式外,其余均采用 AT供电方式;各枢纽和地区内的高中速联络线、动车组走行线及动车段(动车运用所)车场线均采用带回流线的直接供电 方式。在正线贯通方案上,牵引变电所的平均间距 为48.6km,最大间距为 58.6km,供电臂最大长度为 29.9km。四

23、、 牵引变压器类型与容量牵引变压器是牵引变电所中的关键设备,它的结线型式较多,如单相牵引变压器、三相 V结线牵引变压器、平衡型牵引变压器和三相 丫/ 牵引变压器等。牵引变压器类型的选择应综合考虑电力系统容量、牵引负荷对电力系统的 负序影响、安装容量与基本电价和容量利用率等因素。由于高速铁路的牵引负 荷具有波动性、幅值变化大、采用再生制动后牵引变电所左右两供电臂更不易 平衡等特点,京沪高速铁路所采用牵引变压器的结线型式必须适应这些特点。关于单相牵引变压器:它的容量利用率高,牵引变压器安装容量小,有利 于动车组再生能量的利用,但对电力系统的负序影响大,故应在电力系统强大 的地方优先采用;单相结线具

24、有负荷平稳、电能损耗小、有效利用列车再生电 能、运营费用低、结构简单、可靠性高、设备数量少、运营维护方便和工程投 资低等优点;另外采用单相牵引变压器可减少正常运行条件下的接触网电分相 数量,这是其它结线型式的牵引变压器所不及的。关于三相V结线牵引变压器:在两臂牵引负荷相等的前提下,三相 V结线牵引变压器的负序功率等于牵引负荷功率的 50% ;它结构也较简单,牵引变电所的每个供电臂可单独选取所需要的容量,容量利用率较高;但正由于该类型 牵引变压器的每相负荷以供电臂为单元,供电范围小,该类型牵引变压器的安 装容量比单相牵引变压器大。从减少接触网电分相数量、有利于高速动车组运行和降低工程投资及运营

25、费用的角度来看,京沪高速铁路采用单相牵引变压器是适宜的,因此牵引变压 器在电力系统条件允许时优先采用单相结线。从外部条件来看,虽然京沪高速铁路沿线的输配电网络较发达,牵引变电 所的外部电源可以很方便地就近取得 220kV电源;初步调查结果表明:到 2015 年时,沿线电力系统的短路容量一般在 30007000MVA之间。由于京沪高速铁 路牵引变电所的牵引负荷较大,而系统短路容量增长有限和受系统负序承受能 力的限制,牵引变压器全部采用单相结线型式的难度较大。在上阶段与电力部 门协商各牵引变电所的外部电源供电方案时,仍按单相牵引变压器考虑;但沿 线电力部门考虑到自身电网的发展情况以及纯单相牵引负荷

26、对发电厂、微电 子、精密仪器等高科技加工企业的负序和谐波等影响,强烈建议牵引变电所采 用三相接入方式。按国家电网公司和铁道部关于京沪高速铁路等供电工作协 调会议纪要的精神,除昆山牵引变电所拟与沪宁城际变电所合建、牵引变压 器暂采用单相结线型式外,其它变电所中的牵引变压器需采用 220kV外部电源供电和三相接入方式,因此在本阶段牵引变压器按采用三相 V结线型式配置,这样就保证了牵引变电所主接线在近、远期的一致性、可扩展性和可实施性。五、接触网悬挂类型和牵引网导线的电流分配及各种导线的选择京沪高速接触网的悬挂类型采用全补偿弹性链型悬挂。牵引网导线型号的选择应满足机械强度和牵引网负荷电流等要求,牵引

27、网 各导线的截面应保证牵引供电系统载流的要求。在本次京沪高速铁路牵引供电 系统的设计中,正线接触线采用合金含量为 0.5%的镁铜接触导线;正线承力索 采用高导电率(80%)铜合金绞线;正馈线、保护线、供电线和回流线等均采 用铝包钢芯铝绞线。六、枢纽供电与京沪高速铁路相关的既有牵引供电设施按沿线枢纽地区划分分别包括:在北京枢纽设双桥和丰台牵引变电所,北京和北京西开闭所;在天津枢纽设南 仓、豆张庄、杨柳青、军粮城和山岭子牵引变电所,南仓、天津北和天津西分 区所兼开闭所以及天津开闭所;在济南枢纽设济南西、晏城北和郭店牵引变电 所;在徐州枢纽设徐州北和夹河寨牵引变电所,徐州北和徐州开闭所以及徐州 西、

28、周宅子和高家营分区所;在南京枢纽设南京东牵引变电所;在上海枢纽设 南翔和春申牵引变电所,南翔开闭所;在德州和蚌埠地区分别设德州及蚌埠东 牵引变电所。京沪高速铁路枢纽地区牵引供电系统的主要设计原则如下:为了保证铁路枢纽供电的合理性和可靠性,枢纽牵引供电设施的规模和布 点方案,应统筹考虑近、远期的供电需要和路网电气化发展的远期规划,作为 一个整体,统一规划和设计、点线结合,总体方案可结合相关干线电气化工程 分期实施。为保证京沪高速铁路全线牵引供电系统的独立性、完整性、可靠性、系统 性和兼容性,高速铁路一般不与常速铁路混合供电,如在枢纽区段确有需要时 应通过设置开闭所进行供电,以实现单独计量和独立调

29、度,便于运营、管理和 维护;当某一牵引变电所解列时,一般宜由高速线上设置的相邻牵引变电所实 行越区供电,为确保供电安全,高速动车组一般不由既有线上所设置的牵引供 电设施供电。京沪高铁所经由的北京、天津、济南、徐州、南京和上海六大铁路枢纽以 及德州和蚌埠两个铁路地区均设置了牵引变电所,这些牵引变电所在向高速正 线供电的同时,通过增加直馈线的方式兼顾枢纽地区内的高中速联络线、动车 组走行线、动车段(动车运用所)以及相邻既有线的供电,直馈线供电采用带 回流线的直接供电方式。京沪高速铁路在各铁路枢纽和地区内所设置牵引变电所的供电范围为:高 速正线、高速线与既有线的联络线(已纳入京沪高速铁路工程)和动车

30、段(动 车运用所),并为跨线列车的跨线径路和相邻既有线供电或作为备用,实现跨 线径路的供电可靠性,保证高速铁路牵引供电系统自成体系及其完整性,并适宜于独立运营的管理模式。牵引变电所在各铁路枢纽和地区内的设置地点应靠近负荷中心,它首先应 保证高速铁路的供电,在必要时可兼顾相邻既有线的供电,并应方便出线。在牵引变电所出线不便和馈线数目较多的情况下,考虑适当增设开闭所; 当本线和枢纽地区的规划电化线路需合建牵引变电所或开闭所时,本着满足供 电需要的原则进行一次设计,按工程实施进度进行分期建设。距离较长的联络线宜单独设直馈线供电;动车段(动车运用所)的直供馈 线一般不少于两回,其中至少有一回馈线应直接从牵引变电所引入。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1