ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:627.90KB ,
资源ID:4722422      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4722422.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(Study and Comparison of Various Image Edge Detection Techniques.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

Study and Comparison of Various Image Edge Detection Techniques.docx

1、Study and Comparison of Various Image Edge Detection TechniquesRaman Maini & Dr. Himanshu AggarwalStudy and Comparison of Various Image Edge Detection TechniquesABSTRACTEdges characterize boundaries and are therefore a problem of fundamental importance in image processing. Image Edge detection signi

2、ficantly reduces the amount of data and filters out useless information, while preserving the important structural properties in an image. Since edge detection is in the forefront of image processing for object detection, it is crucial to have a good understanding of edge detection algorithms. In th

3、is paper the comparative analysis of various Image Edge Detection techniques is presented. The software is developed using MATLAB 7.0. It has been shown that the Cannys edge detection algorithm performs better than all these operators under almost all scenarios. Evaluation of the images showed that

4、under noisy conditions Canny, LoG( Laplacian of Gaussian), Robert, Prewitt, Sobel exhibit better performance, respectively. 1. It has been observed that Cannys edge detection algorithm is computationally more expensive compared to LoG( Laplacian of Gaussian), Sobel, Prewitt and Roberts operator.Keyw

5、ords: Edge Detection, Noise, Digital Image Processing1. INTRODUCTIONEdge detection refers to the process of identifying and locating sharp discontinuities in an image. The discontinuities are abrupt changes in pixel intensity which characterize boundaries of objects in a scene. Classical methods of

6、edge detection involve convolving the image with an operator (a 2-D filter), which is constructed to be sensitive to large gradients in the image while returning values of zero in uniform regions. There are an extremely large number of edge detection operators available, each designed to be sensitiv

7、e to certain types of edges. Variables involved in the selection of an edge detection operator include Edge orientation, Noise environment and Edge structure. The geometry of the operator determines a characteristic direction in which it is most sensitive to edges. Operators can be optimized to look

8、 for horizontal, vertical, or diagonal edges. Edge detection is difficult in noisy images, since both the noise and the edges contain high- frequency content. Attempts to reduce the noise result in blurred and distorted edges. Operators used on noisy images are typically larger in scope, so they can

9、 average enough data to discount localized noisy pixels. This results in less accurate localization of the detected edges. Not all edges involve a step change in intensity. Effects such as refraction or poor focus can result in objects with boundaries defined by a gradual change in intensity 1. The

10、operator needs to be chosen to be responsive to such a gradual change in those cases. So, there are problems of false edge detection, missing true edges, edge localization, high computational time and problems due to noise etc. Therefore, the objective is to do the comparison of various edge detecti

11、on techniques and analyze the performance of the various techniques in different conditions.There are many ways to perform edge detection. However, the majority of different methods may be grouped into two categories:Gradient based Edge Detection:The gradient method detects the edges by looking for

12、the maximum and minimum in the first derivative of the image.Laplacian based Edge Detection:The Laplacian method searches for zero crossings in the second derivative of the image to find edges. An edge has the one-dimensional shape of a ramp and calculating the derivative of the image can highlight

13、its location.Suppose we have the following signal, with an edge shown by the jump in intensity below:If we take the gradient of this signal, we get the following:Clearly, the derivative shows a maximum located at the center of the edge in the original signal. This method of locating an edge is chara

14、cteristic of the “gradient filter” family of edge detection filters and includes the Sobel method. A pixel location is declared an edge location if the value of the gradient exceeds some threshold. As mentioned before, edges will have higher pixel intensity values than those surrounding it. So once

15、a threshold is set, you can compare the gradient value to the threshold value and detect an edge whenever the threshold is exceeded 2. Furthermore, when the first derivative is at a maximum, the second derivative is zero. As a result, another alternative to finding the location of an edge is to loca

16、te the zeros in the second derivative. This method is known as the Laplacian and the second derivative of the signal is shown below:In this paper we analyzed and did the visual comparison of the most commonly used Gradient and Laplacian based Edge Detection techniques. In section 2 the problem defin

17、ition is presented. In section 3 the various edge detection techniques have been studied and analyzed. In section 4 the visual comparisons of various edge detection techniques have been done by developing software in MATLAB 7.0. Section 5 discusses the advantages and disadvantages of various edge de

18、tection techniques. Section 6 discusses the conclusion reached by analysis and visual comparison of various edge detection techniques developed using MATLAB 7.0.2. PROBLEM DEFINITIONThere are problems of false edge detection, missing true edges, producing thin or thick lines and problems due to nois

19、e etc. In this paper we analyzed and did the visual comparison of the most commonly used Gradient and Laplacian based Edge Detection techniques for problems of inaccurate edge detection, missing true edges, producing thin or thick lines and problems due to noise etc. The software is developed using

20、MATLAB 7.0.3. Edge Detection Techniques3.1 Sobel OperatorThe operator consists of a pair of 33 convolution kernels as shown in Figure 1. One kernel is simply the other rotated by 90.FIGURE 1:Masks used by Sobel OperatorThese kernels are designed to respond maximally to edges running vertically and h

21、orizontally relative to the pixel grid, one kernel for each of the two perpendicular orientations. The kernels can be applied separately to the input image, to produce separate measurements of the gradient component in each orientation (call these Gx and Gy). These can then be combined together to f

22、ind the absolute magnitude of the gradient at each point and the orientation of that gradient 3. The gradient magnitude is given by:Typically, an approximate magnitude is computed using:which is much faster to compute.The angle of orientation of the edge (relative to the pixel grid) giving rise to t

23、he spatial gradient is given by:3.2 Roberts cross operator:The Roberts Cross operator performs a simple, quick to compute, 2-D spatial gradient measurement on an image. Pixel values at each point in the output represent the estimated absolute magnitude of the spatial gradient of the input image at t

24、hat point. The operator consists of a pair of 22 convolution kernels as shown in Figure 2. One kernel is simply the other rotated by 904. This is very similar to the Sobel operator.FIGURE 2:Masks used for Robert operator.These kernels are designed to respond maximally to edges running at 45 to the p

25、ixel grid, one kernel for each of the two perpendicular orientations. The kernels can be applied separately to the input image, to produce separate measurements of the gradient component in each orientation (call these Gx and Gy). These can then be combined together to find the absolute magnitude of

26、 the gradient at each point and the orientation of that gradient. The gradient magnitude is given by:although typically, an approximate magnitude is computed using: which is much faster to compute.The angle of orientation of the edge giving rise to the spatial gradient (relative to the pixel grid or

27、ientation) is given by: 3.3 Prewitts operator:Prewitt operator 5 is similar to the Sobel operator and is used for detecting vertical and horizontal edges in images.FIGURE 3: Masks for the Prewitt gradient edge detector3.4 Laplacian of Gaussian:The Laplacian is a 2-D isotropic measure of the 2nd spat

28、ial derivative of an image. The Laplacian of an image highlights regions of rapid intensity change and is therefore often used for edge detection. The Laplacian is often applied to an image that has first been smoothed with something approximating a Gaussian Smoothing filter in order to reduce its s

29、ensitivity to noise. The operator normally takes a single gray level image as input and produces another gray level image as output.The Laplacian L(x,y) of an image with pixel intensity values I(x,y) is given by:Since the input image is represented as a set of discrete pixels, we have to find a disc

30、rete convolution kernel that can approximate the second derivatives in the definition of the Laplacian5. Three commonly used small kernels are shown in Figure 4.FIGURE 4. Three commonly used discrete approximations to the Laplacian filter.Because these kernels are approximating a second derivative m

31、easurement on the image, they are very sensitive to noise. To counter this, the image is often Gaussian Smoothed before applying the Laplacian filter. This pre-processing step reduces the high frequency noise components prior to the differentiation step.In fact, since the convolution operation is as

32、sociative, we can convolve the Gaussian smoothing filter with the Laplacian filter first of all, and then convolve this hybrid filter with the image to achieve the required result. Doing things this way has two advantages: Since both the Gaussian and the Laplacian kernels are usually much smaller than the image, this method usually requires far fewer arithmetic operations.The LoG (Laplacian of Gaussian)6 kernel can be pre-calculated in advance so only one convolution needs to be performed at run-time on the image.The 2-D LoG function 7 centered

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1