ImageVerifierCode 换一换
格式:DOCX , 页数:25 ,大小:629.20KB ,
资源ID:4681970      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4681970.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(地下储气库的成本优化UGS.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

地下储气库的成本优化UGS.docx

1、地下储气库的成本优化UGSabstractThe paper presents the cost optimization of an underground gas storage (UGS), designed from lined rock caverns (LRC). The optimization is performed by the non-linear programming (NLP) approach. For this purpose, the NLP optimization model OPTUGS was developed. The model comprise

2、s the cost objective function, which is subjected to geomechanical and design constraints. The geotechnical problem is proposed to be solved simultaneously. Geomechanical rock mass parameters are determined from geological conditions of a selected suitable UGS location and a special FE model is gene

3、rated. The rock mass strength stability and safety of the system are then analyzed for various combinations between different design parameters like inner gas pressures, cavern depths, cavern diameters and cavern wall thickness. As a result, geomechanical constraints are approximated and put into th

4、e optimization model OPTUGS. This way, the optimization enables not only the obtaining of an optimal solution but also that the rock mass achieves sufficient strength stability and safety. The optimization is proposed to be performed for the phase of preliminary design. The numerical example at the

5、end of the paper demonstrates the efficiency of the introduced optimization approach.摘要本文提出了一个从内衬岩洞(LRC)设计的地下储气库(UGS)成本优化。该优化是通过非线性规划(NLP)的方式进行的。为了这个目的,在非线性规划(NLP)优化模型OPTUS便被开发出来了。该模型包括成本目标函数,它受到地质力学和设计等条件的区间。同时,提出的岩土问题要得到解决。地质力学岩体参数是由所选择的合适的UGS位置的地质条件和所产生的一个特殊有限元模型来确定的。该系统的岩体强度的稳定性和安全性是分析不同的设计参数,如内

6、部气体压力,洞穴深处,洞穴直径和洞穴壁厚之间的各种组合确定的。其结果,地质力学区间近似并投入优化模型OPTUGS。以此方式,优化获得的不仅仅是最优解,而且该岩体能达到足够的强度稳定性和安全性。优化主要用于初步设计阶段。在本文的最后数值示例演示了引入优化方法的效果 。1. IntroductionHigh pressure gas reservoirs are typically designed in a cylindrical form from steel, pre-stressed concrete or composite walls. The construction of thes

7、e type of structures is relatively difficult and expensive due to high internal pressures. Special care has to be paid to systems safety. For this reason, an idea to design underground gas storages was raised forty years ago. In the beginning, engineers/researches designed gas or oil storage in deep

8、 aquifers or leaved wells. Since such solutions proved to be ineffective, the concept of high pressure underground gas storage (UGS), carried out by the technology of rock caverns, was promptly created and applied in praxis.1.引言 高压气储存罐通常被设计成由钢,预应力混凝土或复合壁制作的圆筒形。由于高的内部压力,这些类型的结构的建造是相当困难和昂贵的。特别注意是必须注意系

9、统的安全性。出于这个原因,早在四十年前就有设计地下储气库的想法。在开始的时候,工程师/研究设计把天然气或石油储存在深部含水层或废弃井中。然而,由于这种解决方案被证明是无效的,通过岩洞的技术,高压地下储气库(UGS)的概念被及时建立并应用于实践中。There are two types of rock caverns used for this purpose: unlined rock caverns and lined rock caverns (LRC). The main request in the designing and construction of rock caverns

10、is the prevention of gas leaking from the storage. In the unlined rock cavern, gas is kept from escaping by ensuring that groundwater pressure in the surrounding rock exceeds the gas pressure in the storage 1. The required gas pressure can be achieved by locating a cavern at a sufficient depth or by

11、 installing a water curtain around the cavern 2,3. The latter requires performing a comprehensive hydraulic analysis for gas containment of the storage terminal. By contrast to the unlined rock cavern, the concept of the lined rock cavern, LRC, is an UGS of gas at high pressure, supported by the sur

12、rounding rock 47. The main idea of the LRC is to prevent the gas leakage from the cavern by a thin steel lining. In normal conditions, the LRC is completely impermeable and no extra analysis for gas containment is needed.有两种类型的岩洞中用于此目的:单衣岩洞和内衬岩洞(LRC)。在设计和建设岩洞的主要要求是防止存储的气体发生泄漏。在该无内衬岩洞,气体通过确保围岩的地下水压力总

13、大于存储气的气体压力。所需的气体压力可以通过一个定位在洞穴足够深或者洞穴周围上安装水帘来实现。后者需要对存储终端的气体遏制进行全面的水力分析。与的单衣岩洞相反,内衬岩石洞穴,LRC,是在由围岩支持下的高压气体的地下储气库UGS。LRC的主要理论是,防止由于洞穴内的薄钢板内层发生的气体泄漏。在正常情况下,LRC是完全不透水,并且不需要对气体容器进行额外的水力分析。The UGS, considered in this paper, is planned to be constructed with one or more LRCs. The structure of the LRC is sim

14、ple: its reservoir wall is designed from a concrete wall and a steel lining. Although the concrete wall is reinforced, it just transports the gas pressure from the cavern onto the surrounding rock. The same holds for the steel lining, which only enables impermeability (sealing). The LRC load capacit

15、y is thus provided by the surrounding rock only.本文所考虑的是,UGS是计划用一种或多种LRC结合构成的。LRC的结构很简单:它的储存器壁是由混凝土墙和钢材衬里设计。虽然水泥墙得到加固,但它只是将洞穴内的气体压力转移到周围的岩石上。这同样适用于钢内衬,这使抗渗性(密封)。LRC负荷能力仅由围岩提供。To improve the economic effectiveness of the UGS designed with LRCs, this paper introduces a cost optimization of the UGS stru

16、cture. Since a recent attempt 8 was based on the optimization of a single gas cavern only, this research handles the optimization of the entire UGS with any selected number of caverns. The optimization is performed by the non-linear programming (NLP) approach. For this purpose, the NLP optimization

17、model is developed. Since the optimization is proposed to be performed for the phase of the preliminary design, only some basic conditions are defined in the optimization model in order to assure sufficient strength safety of the rock mass and impermeability of the cavern wall and steel lining. The

18、latter is achieved by the limitation of the steel lining and concrete wall stains. The primary objectives of the proposed optimization are:为了提高LRC设计的UGS的经济效益,本文介绍了UGS建设的成本优化。由于最近的尝试8是基于仅单个气体洞穴的优化,本研究处理整个任何选定数目洞穴的UGS的优化。该优化是通过非线性规划(NLP)的方式进行的。为了这个目的,非线性规划优化模型发展了起来。由于优化被提议用于初步设计的阶段,在优化模型中,只是一些基本条件被定义,

19、以便确保岩体足够强度的安全性和洞穴壁、钢衬里的抗渗能力。后者是由钢衬里和混凝土墙污渍的限制来实现的。建议优化的主要目标是: Minimization of the investment costs of the UGS system, Storing the highest possible quantity of gas under high pressure, Ensuring the safety of the UGS at the time of construction and service, Calculation of the inner gas pressure, the c

20、avern depth, the cavern inner diameter, thickness of the cavern concrete wall and the height of the cavern tube in the optimization.最小化UGS系统的投资成本,存储在高压下气体的可能的最高量,确保UGS在施工和服务时的安全,在优化中内部气体压力计算,洞穴深度,洞穴内直径,洞穴混凝土墙的厚度和洞穴管道的高度。In order to achieve the above mentioned objectives, the geotechnical problem is

21、proposed to be solved simultaneously. Hence, geomechanical rock mass properties are determined from investigations in the field and in the laboratory. Many methods were in the past developed for determining of rock mass properties. In this work the generalized HoekBrown failure criterion 9 is propos

22、ed to be applied and the MohrCoulomb strength parameters (the cohesion and the friction angle) are determined. In addition, the rock mass tensile strength, the uniaxial rock mass compressive strength, the global rock mass compressive strength and the rock mass deformation modulus are calculated. Aft

23、er the geomechanical rock mass parameters are determined for a selected UGS location, a special FE model is proposed to be generated. The strength stability of the rock mass and the safety of the system are then calculated/analyzed for various design parameters like inner gas pressures, cavern depth

24、, cavern diameters and different cavern wall thickness. As a result,geomechanical constraints including the allowable safety/stability factors and strains of the system structure are in dependence of the mentioned design parameters proposed to be defined and put intothe optimization model. 为了实现上述目标,

25、同时也可以解决所遇到的岩土问题。因此,地质力学岩体性质从现场和实验室研究来确定。过去许多方法都是为了确定的岩体性质制定的。在这项工作中要应用广义霍克一布朗破坏准则9并且确定莫尔一库仑强度参数(凝聚力和内摩擦角)。此外,还有岩体抗拉强度,单轴岩体抗压强度,全球岩体抗压强度和岩体变形模量的计算。在确定一个已选择的UGS位置的地质力学岩体参数之后,产生了一种特殊的有限元模型。岩体和系统的安全性的强度稳定性然后计算/关于各种设计参数,如内部气体压力,洞穴深度,洞穴的直径和不同的洞穴壁厚分析。其结果,地质力学的限制包括可允许安全/稳定的因素,并且系统结构的张力依赖于所提到的拟限定并投入的设计参数的优化模

26、型。 2. Underground gas storage (UGS)The paper deals with the underground gas storage (UGS) designed from one or more lined rock caverns (LRC), see Fig. 1. The LRC is a pressure tank containing gas stored under high pressure. The gas pressure is transmitted through the cavern wall to the surrounding r

27、ock. The rock provides the LRC capacity. The system of tunnels is designed in order to transport materials and allow access for machinery during the construction of the underground chambers. The LRCs are linked with the ground surface by vertical shafts. The shaft steel pipes are made for filling an

28、d emptying thegas storage. The design of the considered LRC structure is typical. It consists of the cylindrical wall and the upper and lower spheres, see Fig. 2. The caverns are typically 50 to 100 m high and are located at depths from 100 to 300 m. Their concept involvesrelatively large diameters:

29、 between 10 and 50 m. The concrete wall is 2 or more meters thick, the thickness of the steel lining amounts from 12 to 15 mm. The concrete wall uniformly transmits the internal pressure to the rock and consequently uniformly distributes the deformations. The reinforcement in the concrete prevents t

30、angential deformations. The task of the steel lining is to seal and to bridge small cracks of the concrete. The drainage system is installed on the outer side of the cavern wall. It drains the water and enables the monitoring, collection and removal of the gas in case of gas leakage.2. 地下储气库(UGS) 本文

31、论述了由一个或多个内衬岩洞(LRC)设计的地下储气库(UGS),见图 1。 LRC是含有高压状态储存的气体的压力罐。气体压力通过洞穴壁传递到周围的岩石。岩石提供了LRC能力。隧道的系统的目的是在地下腔室中的施工过程中输送的材料,并允许用的机械。 LRC与垂直轴地面相连。轴钢管被用于填充和排空储气库。所考虑的LRC结构的设计是典型的。它由圆筒形壁和上,下球组成的,见图 2。洞穴通常高为50至100微米,深度为100至300微米。它们的概念涉及相对较大的直径:1050微米。混凝土墙厚2以上米,钢衬厚度为12至15毫米。混凝土墙均匀转移的内部压力到岩石,从而均匀分布的变形。在混凝土中的加强防止切向变

32、形。钢衬里的任务是,以密封和弥合混凝土的小裂缝。排水系统安装在洞穴壁的外侧。它排泄水并且在万一发生气体泄漏时起到监测,收集和除去气体的作用。The external pressure of the rock mass (between 1 to 3 MPa) acts on the cavern wall during construction and operation. It depends on the depth of the cavern (between 100 and 300 m). The internal pressure of the gas cyclically increases and decreases during periods of gas supply and discharge between the minimal (3 MPa) and maximal (calculated) value. The internal pressure therefore causes static and cyclic loads. The lifetime of the LRC is typically designed to be higher than 500 cycles.在建设和操作过程中,岩体(1之间3兆帕)的外部压力作用的洞穴壁。这取决

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1