ImageVerifierCode 换一换
格式:DOCX , 页数:4 ,大小:21.84KB ,
资源ID:4667308      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4667308.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(股票价格的期权定价模型分析.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

股票价格的期权定价模型分析.docx

1、股票价格的期权定价模型分析股票价格的期权定价模型分析 1.2 早期模型 1.2.1 期权的含义 期权,简单地说就是一个订货,我们用一个例子来说明。 甲希望在一年以后购得某品牌新上市的手机A,甲认为该手机新上市时会以8000元出售,超过了甲的承受范围,同时,有乙认为,该手机新上市时会以6000元出售,那么这时甲乙同意签署一份合同(即期权),且甲向乙支付期权费用,该合同规定,当手机上市时,甲有权利以7000元的价格从乙处购买手机A,但是甲不具备买入的义务。 这是最简单的期权模型,我们也可以规定将“买入”改为“卖出”,不变的只是支付期权费用的人是有权利而无义务的。 1.2.2 期权定价模型的发展 股

2、市有风险,投资需谨慎。正是这种风险显示了期权的价格,长久以来,人们一直致力于研究如何用各种不确定因素估计标的资产的风险。 早在20世纪初,法国数学家路易斯在他的投机理论中就提出了对绝对的布朗运动的股票价格(股价的变动也是一个随机过程,其变化过程可以用布朗运动来模拟)的估值模型,站在买方的角度上进行统计,其期权价值主要是: (1-1) , 因为理论并未关注到正值货币的 1964年,波内斯提出了在固定对数分布下的股票收益,给出了以下定价公式: (1-2) 此处,表示股票预期收益率。 二十世纪中期,萨缪尔森寻找到欧式买方期权的定价方式,思考到需要具备较高预期收益率,此主要公式为: (1-3) 通过观

3、察(1-2)(1-3)可知,波内斯模型就是萨缪尔森模型在 = 时的特殊情况3-7,11。 这些理论,为Black-Scholes定价理论的发展寻找到正确方向,还对日后的各项定价理论的发展起到了决定性的作用。 第二章 现代期权定价模型 2.1 Black-Scholes模型 二十世纪七十年代,Black等专家指出Black-Scholes模型 (此后叫做B-S模型),另外,Merton在很多方面做出了重要推广。上述学者在股价服从对数正态分布的假设基础上,使用相关观点,推测得到不需要红利的欧式期权定价模型: (2-1) 其中: 我们已经知道,在清算日,买入期权的支付为,我们只要求出的期望,我们就可

4、以通过利率贴现,求出现在的期权价格,即: (2-2) 因此突破口在于计算出。取是的概率,那么,,即 (2-3) 该问题最终归结为求解和。接下来我们来求解这两个量。 (1) 求。 因为,有和, 故有 (2-4) 在风险中性基础上,基于上述假定我们就可以知道,服从正态分布,此外其期望与方差主要是: 及 其中。所以,随机变量服从标准正态分布。 (2-5) 如果记 , 。 (2-6) 由于服从对数正态分布。 分布密度函数 。 其中: , 故 作变量替换: (2-7) 有: ,且当时,而当时, 可以得到: (2-8) 故: Black-Scholes主要观点是,人们对风险持有的态度并不能影响期权的有效价

5、格,就是估值方式和股价期望收益率没有关系,它仅依赖于一些可观测变量,如:S(股票现价)、r(无风险利率)与(股票价格波动率)(波动率可依照众多历史信息统计得出)、X(具体执行价格)、(到期 2.2 二项式定价法 二项式期权定价法(二叉树法)是由Rubinstein等人提出的一种数值计算法。 2.2.1 单期二项式期权模型 假定:股票期初和期末时刻价格为、。记起初时刻的期权价值为C。那么S与C在期末时有如下表示: P Su C S 1-P Sd 现在我们可以构建一个如下组合: 对任意S1,由于是套期保值组合,故存在等式: 解出: (2-9) 又有: (2-10) 此处,r为无风险利率,T是整个

6、由(2-7)与(2-8)可得 (2-11) 解出: 又因为: 则: 即 (2-12) 可得 得出单期看涨期权的具体定价公式: (2-13) 2.2.2 n期看涨期权的二项式期权定价公式 将上述得出的定价公式当做重要前提,此时把二项式期权定价公式使用到多期(此处常用条件是)。 下图是两期股票价格二叉树图 Sud=S S 且有: 直接利用单期看涨期权的二项式期权定价公式,可得 (2-14) (2-15) 其中,t是每一期的 再对,运用单期看涨期权的二项式期权定价公式,可得: (2-16) 主要是两期看涨期权的定价公式。 通过两期模型可直接推测出期,研究购买期到期看涨期权,股票价格是,而多个周期内涨

7、价或降价概率p,1-p与u,d值都相似,此时每期价格主要被划分成两部分,如此,在n期末,价格的所有可能数值是,i=0,1,n,此外=概率是: 按照推导两期模型的思路,从第n期开始向前递推,可以得到n期看涨期权的二项式定价公式: (2-17) 二项 式期权定价重点是u和d明确,在实际使用中,假如时刻是t,期权到期日是T,就将有效期T-t分类成n个周期,各个周期长度是t(年是单位),无风险利率是r,具体波动率是,那么可以让 , (2-18) 因为二项式期权定价模型主要使用离散化形式来处置价格,因此在具体合约期内,其也需要思考股利发放现状。此外,在树状结构结束之后,了解到期的全部价值,可以推测出以前

8、结点的全部数据,且统计出价格树上所有结点具备的意义。在上述结点,可对比始终持有与马上执行的价值,进而挑选最佳数值。不只能得到所有点的正当价格,此外还能了解最佳期权执行 为了让此定价模型统计的数据更加精准,必须让n取相对高的数值。但是在n提高时,所要统计的任务也会随之增多。n一直变大最终趋向到无穷大的时候。本文分析模型和Black-Scholes期权定价模型全部相同。在后者遭受约束或者和现实情况有明显不同时使用本文分析模型就能得到较好效果。 2.3 Monte-Carlo模拟方法 Monte-Carlo模拟方式还是重要的数值统计方式,能对欧式衍生证券开展估值。其可以处理相对复杂的问题,此外计算效

9、率高,其主要由初始时刻的期权值推测出此后时刻期权值,主要使用在欧式期权中。 Monte-Carlo模拟方式的主要理论是:假定了解标的资产价格的分布函数,之后将有效期限划分成众多较小间隔,通过电脑具备的功能,需要从上述样本内随意选择来模拟不同间隔股票价格变化和价格也许表现出的具体路径,如此就可以计算出期权真实价值。上述结论可被当做所有可能终值集合内的随机样本,使用上述变量其他路径可得到其他的相关样本。通过较多路径就能得到较多的样本。如此持续反复无限次,就能得到T时刻价格总集合,对众多随机样本开展大致计算,可以得到相应的预期收益。依照相关定价知识,把此后T时刻的预期收益Xr使用无风险利率折现,随之

10、得出当前价格: (2-19) 此处,P代表期权价格,r代表无风险利率,目前时刻是0,是T时刻预期效益。 此方式主要使用在对标的股票标准差是随机变量的期权进行分析,具体价格进而标准差的路径均被模拟。任意时刻标准差之值,影响本研究股票价格的概率情况。 此方式主要优点是使用在标的资产的预期收益率和波动率函数形式相对繁琐时,此外模拟运算 Monte-Carlo模拟可以和二叉树图方法结合起来为期权定价。在树图构造全部完成之后,能够从其中随机选择样本。但是此时并非从后往前倒推,主要是依照图形往后推。主要方式是: 在首个结点我们选择0到1范围内的随机数,假如上述数低于P,此时需要增加分支,否则就要减少分支。

11、进入下个结点之后,继续重复以上过程,一直进入树图底端,之后可统计选定路径期权盈亏值,如此就可以顺利完结。反复以上所有环节,开展数次模拟。此时把全部盈亏值按照无风险利率开展贴现之后得到平均值,也就是期权价格计值。 第三章 股票期权的定价方法 在之前的长久 最初股票定价模型是John B. Williams在二十世纪末期设计的,主要内容是: (3-1) 此处,S是目前股票价格,是第i期期末现金股息,是期望收益率,其等于无风险利率以及风险补偿率。 二十世纪中期,有关专家在上述研究前提下,设计具体模型。 假定:股息以预期稳定增长率发展,此时( 3-1)式则是: (3-2) 在的基础上,公式被简化成:

12、(3-3) 可以看出,传统模型的构造是完全符合逻辑的,但是也存在如下弊端: 值与无风险利率、补偿率有一定关系,后者和众多不明确的隐藏投资者的风险偏好有关,故难以准确估算。 准确的预计未来很长 而对于股息折现模型,其在时是没有意义的。切对的估计很难精确。因此,除了在简化模型中用于检测,传统方法很难进行实用。 3.1 股票的期权定价方法 3.1.1 权益资本的期权特征 假定:V表示公司价值,X表示公司负债,那么在到期日,会有如下情况: V X,股东无剩余价值。 V X,公司不仅能覆盖债权人的债务,其超过部分还归股东所有。 这种情形如图所示: 类比可知,公司的资产好比一个看涨期权,在经营周期期末,若

13、有VX,股东将行权,其盈利为V-X;若有V X或V=X,股东将放弃行权,股东会亏损买入股权的费用。 公司价值V 股东损益 0 -C X 3.1.2 期权定价模型 根据之前的叙述,即便企业股票属于看涨期权,显然可以通过看涨期权的定价模型来统计股票综合价值,只需要了解总股数,每股价格就可以顺利了解到。 接下来深入分析怎样使用Black-Scholes期权定价模型确定股票价格。 根据Black-Scholes期权定价模型,主要公式是: (3-4) 其中 , ,是标准正态分布函数, 把上面模型中的变量重新定义: 我们可以直接代入(3-4)式进行计算,得到的C就是公司股票的总价值。 3.1.3 模型参数

14、的估计 在采用Black-Scholes模型时可知,S、X、r、T都是可以直接得到或者精确估计的,那么问题的关键就是如何准确预估行业价值的波动率。 确定公司此后市场价值年波动率。 本文分析模型假设股票价格对数符合正态分布,此时波动率就是年收益率的标准差,且假设前者在有效期内不会出现改变。一般来说波动率统计是在大量信息前提下开展估计,在此处明显可通过企业价值的之前评估值来明确年波动率。 确定下述定义符号:n +1代表观察次数,代表在第i个 因为标准差是,此时变量s为其估计值,因此自身就是被预估成,此处,因此估计标准误差类似于。 3.2 股票的期权定价应用实例 下表确定某企业在1997年4月到20

15、02年6月底二十个季度的企业价值评估值。 季度 公司价值评估表 (千万元) 公司评估价值比率() 每季收益 每季收益平方 0 20 1 20.125 1.00625 0.00623 0.00004 2 19.875 0.* -0.01250 0.000156 3 20 1.00629 0.00627 0.00004 4 20.5 1.02500 0.02469 0.00061 5 20.25 0.* -0.01227 0.00015 6 20.875 1.03086 0.03040 0.000924 7 20.875 1.00000 0.00000 0.00000 8 20.875 1.000

16、00 0.00000 0.00000 9 20.75 0.* -0.00601 0.000036 0 20.75 1.00000 0.00000 0.00000 11 21 1.01205 0.01198 0.00014 12 21.125 1.00595 0.00593 0.000035 13 20.875 0.* -0.01190 0.00014 14 20.875 1.00000 0.00000 0.00000 15 21.25 1.01796 0.01780 0.00032 16 21.375 1.00588 0.00587 0.000034 17 21.375 1.00000 0.0

17、0000 0.00000 18 21.25 0.* -0.00587 0.000034 19 21.75 1.02353 0.02326 0.00054 20 22 1.01149 0.01143 0.00013 合计 0.09531 0.00333 根据(3-6)式,可以计算出公司价值季度收益率标准差的估计值是: 由于=1/4年,则波动率的估计值是: 所以该公司价值波动率的估计值是每年2.46%,这个估计值的标准误差是: 或每年0.389%。 公司资产负债表(2002年6月30日) 单位:千万元 资产 负债及所有者权益 流动资产 5.43 流动负债 3.62 固定资产 12.24 公司债券

18、12.00 其他资产 4.33 股东权益 6.38 资产合计 22.00 负债及权益合计 22.00 上述是此企业在2002年第二季度底的大致资产负债表,企业下发的债券到期 己知该公司在2002年6月30日的评估价值是22千万元,去除其余短期负债后企业价值是S =18.38千万元(22-3.62 = 18.38)。假定无风险年利率r=10%,那么依照Black-Scholes定价公式,可统计得到: 负债率:(12.00+3.62)/22.00=71% 假如企业准备下发的综合股数是100万,那么每股价格是61.1元。根据上述案例可知,即便企业总负债率为71%,然而企业价值变化不大,运作业绩平稳,

19、企业在债券到期时执行看涨期权的可能性是98.5%,也就是企业有很高的概率支付债务,破产概率很低。 3.3 与蒙特卡洛模拟的对比 为了说明B-S模型的准确性,我们采用一种传统方法来与B-S模型所得到的结果来进行比较。从前面的介绍我们可以知道,二叉树是最容易理解的方法,但是为了使二叉树模型得到精确的结果,我们不得不使n取一个很大的数,然而当n增加时,所需要计算的步骤将呈几何级数增加,很难操作。并且n越来越大时,会越来越趋近于B-S模型,这种验证是没有意义的。而蒙特卡洛模拟法和B-S模型是完全不同的两种思路,同时可以借助matlab进行快速的计算,且不会因为维数而影响误差,相比之下,我们选择蒙特卡洛

20、模拟法来与B-S模型比较。 我们还是采用上表的数据,选择第四季度为起始 接下来,我们用matlab来估计股价: 首先,我们把股票的有效期限分为若干个很小的 确定无风险利率r=0.1,这和用B-S模型时市场的无风险利率是一致的。 第三步,计算市场的波动率,这里用到的方法和B-S模型中第一步用到的方法是相同的,只需要带入第四季度的数据计算即可。过程也非常简单,易知波动率sigma=0.0304。同时确定从起始日到到期日的 现在我们要构造蒙特卡洛模拟,确定三个循环: 首先是由起始日到到期日中的每一天我们都要进行模拟。这是第一个循环: For nDays = 1 : nDays1 其次,每一天中要选择

21、若干个运行路径,并且利用这些路径产生符合正态分布的随机矩阵。本例中我们确定路径数是1000条。这是第二个循环: for j = 1 : nTrails n = randn(1,nDays) 最后要确定每一天的股价,从而依次确定其后的股价,直至到期日。这是第三个循环: for i = 1 : nDays ds = s * (expTerm+stddev * n(i) 确定三个循环之后,也就是我们通过反复无数次测试以后,得出到期日时刻股票价格的汇总,对上述随机样本开展大致的算术平均就能得出到期日的具体股票价格。 完整的蒙特卡洛模拟模型如下图: 经过模拟我们得到了如下所示的到期日当天的股价集合: 利

22、用上述计算得到的平均值,此时就可以得到下面的股价: 很容易看出,由蒙特卡洛模拟得到的最终的股价是在59.2,59.7波动,由期权定价法得到的股价是61.1,两个结果较为吻合。从上面的构造过程可以看出,蒙特卡洛模拟最后是简单的取得集合的算术平均值,这对最后结果的准确性是有影响的,因为任一时刻投资者对股价影响的大小是不同的,所有这些影响都会使得股价的变动趋向于某个方向,在股价趋向于某个方向后,投资者的行为对股价的影响又会改变,这种影响我们可以看作是一种较为定向的影响,而不再是随机的影响,因此蒙特卡洛模拟在处理股价问题上时虽然过程简单,但结果仍然不是非常准确的,在没有对蒙特卡洛模拟法进行改进、时期较

23、长或B-S模型没有受到限制时,B-S模型应该是一个更好的选择。 第四章 反思与展望 回顾整篇文章,运用到了如下几种方法: 历史研究方法。利用分析期权定价理论的发展历程,得知期权定价理论发展主要规律和具体的期权定价方式。 定性和定量相融合的分析方式。本文在关注股票价格的定性叙述的时候,也格外关注对定量分析方式的研究与使用,利用实例表述Black-Scholes模型能被使用在定价活动中。 共性和个性之间的对比分析。期权理论表现出一般性,本文在全面叙述期权知识与方式的时候,指出期权定价的独特性。 到现在,我们顺利的将Black-Scholes模型使用到具体定价活动中,但是以上过程都是基于市场上已知的

24、信息,换句话说,B-S模型只是用于对股价的检验,查看公司对股票的定价是否合理、投资者对市场的影响是否已经导致了市场失灵。那么我们能否将B-S模型运用到股价的预测上呢? 对于这一问题,理论上是不可以的。 首先我们要清楚,对股价的预测是以人为主体的,“人”这个变量本身就是不可测的,人的情绪、人所具有的知识体系都影响着人对股价的预测。借用索罗斯的观点,即便预测股价这一行为本身具有一定的可行性,对其进行预测这一行为本身就会对股价产生影响最重要的是,这种影响是无法预测的。如此一来,就会导致对股价的预测是不可行的。总之,股票投资是一个大众选美的过程,除非你能左右大众的思想,否则,你想准确预测股票的价格是非常困难的。 虽然就目前而言预测股价是一个“不可能事件”,然而融合其他学科的知识。说不定可以找到一个适合大众使用的数学公式。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1