ImageVerifierCode 换一换
格式:DOCX , 页数:12 ,大小:22.45KB ,
资源ID:4654451      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4654451.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(危险化学品泄漏事故后果评.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

危险化学品泄漏事故后果评.docx

1、危险化学品泄漏事故后果评附件八 危险化学品泄漏事故后果评价8.1 评价内容本章主要对天然气输送管道、液氨储罐、甲醇储罐、二甲醚储罐、液氨输送管道、甲醇输送管道、二甲醚输送管道、丁烷储罐等进行物料泄漏的模拟,以便对液氨、甲醇、二甲醚、丁烷泄漏事故的后果进行评价。内容包括1)毒物泄漏扩散事故情景模拟确定评价因子,选取典型的泄漏事故情景。2)毒物扩散危害评价选择毒物泄漏扩散模式,划分火灾危险性及毒物危害等级,计算毒物扩散危害距离与面积,并确定出各危害等级的浓度等值线图。3)评价结果讨论8.2 物料泄漏扩散事故情景模拟8.2.1 评价因子的确定在泸天化集团公司范围内,对天然气输送管道、液氨储罐、甲醇储

2、罐、二甲醚储罐、丁烷储罐、液氨输送管道、甲醇输送管道、二甲醚输送管道输送和储存的有毒和易燃物料量大,均可作为重大危险源,一旦发生泄漏事故,将造成严重的后果,因此选取对天然气输送管道、液氨储罐、甲醇储罐、二甲醚储罐、液氨输送管道、甲醇输送管道、二甲醚输送管道、丁烷储罐作为评价因子。液氨、甲醇、二甲醚、丁烷的主要理化特性见表8-1所示表8-1 评价因子的主要理化特性 名称分子量储存温度下的蒸气压沸点()储存压力 (MPa) 储存温度()相对密度液体气体液氨17.03常压-33常压-330.820.6天然气16-161.491.015-250.50.8甲醇储罐320.0126MPa64.5常压常温0

3、.81.11甲醇管道320.0126MPa64.51.0常温0.81.11二甲醚球罐460.51MPa-24.90.7常温0.671.61二甲醚管道460.51MPa-24.91.4常温0.671.61丁烷储罐58.120.106-0.53.8常温0.582.058.2.2 典型泄漏事故情景的选取1)泄漏物料液氨、天然气、甲醇、二甲醚、丁烷泄漏2)泄漏源选取的泄漏源包括:天然气配气站至主装置的输送管道液氨储罐(球)从合成氨至尿素装置的成品氨输送管道粗甲醇储罐的进出管道甲醇库区甲醇储管的进出管道二甲醚精馏塔的进出管道二甲醚库区球罐的进出管道丁烷罐区储罐的进出管道3)泄漏事故规模根据泸天化集团公司

4、天然气输送管道、液氨储罐、甲醇储罐、二甲醚储罐、丁烷储罐、液氨输送管道、甲醇输送管道、二甲醚输送管道的实际安全状况,结合国内外化学危险品罐区安全技术状况以及事故案例的调查,选取以下两种典型泄漏事故作为评价对象。小型泄漏(泄漏孔径25mm)中型泄漏(泄漏孔径75mm)大型泄漏(管道完全破裂,泄漏孔径100/150/200mm,根据储罐的进出口管道最大直径确定) 8.3 毒物扩散气象条件对毒物扩散起作用的气象条件主要包括:风速、大气稳定度、混合层高度、光照和气温等。根据项目所在地的气象条件,风速选取静风(风速1.0m/s)和年平均风速(风速1.7m/s)以及最大风速(风速13.5m/s)三种情况,

5、风向选取本地区年主导风向之一的东北风向进行模拟计算。本评价主要考虑一旦天然气输送管道、甲醇成品储罐、二甲醚储罐、丁烷储罐、甲醇输送管道、二甲醚输送管道发生泄漏事故,氨气对小下风向区域的危害程度和可燃气体爆炸下限所涉及的区域。气温选取年平均气温17.1,大气稳定度选取中性稳定度。混合层高度和光照条件选取一般条件。8.4 泄放源模式8.4.1 气体释放量以声速气体流量公式为基础,用来计算气体释放量。AQ=4.75110-6D2PaMw/(T+273)1/2式中:AQ气体释放量,Kg/s; Pa绝压,KPa; Mw物质的相对分子量 T温度, D泄漏孔的直径,mm8.4.2 液体释放量1)确定释放的液

6、体流量液体释放流量L由下式确定:L=9.4410-7D21(1000Pg/1+9.8h)式中:L液体释放流量,Kg/s;Pg表压,KPa;1操作温度下液体的密度,Kg/m3; h释放点以上液位高度,mD泄漏孔的直径,mm公式假设所有的释放在终止前至少持续5min,如果5min释放可能超过总储量,则释放流速用总量除以5min来计算。确定释放的液体总量为了确定液池尺寸,必须估算形成液池的毒物总量。如果一次释放大得足以在15min内放空容器(包括在5min内发生很大的释放),则进入液池中的液体量是容器的总储量。对更长时间的持续释放(大于15min),假设液池在15min后达到最终的尺寸。因此,总的液

7、体释放量WT是储罐储量(储罐在15min内放空),或用下式表示:WT=900L 计算闪蒸系数比较液体的操作温度与它的标准沸点,如果温度小于沸点,闪蒸率0。如果温度大于沸点,则需要计算闪蒸系数。释放时的闪蒸系数Fv用下式表示:Fv=Cp(Ts-Tb)/Hv式中:Fv释放液体的闪蒸系数 Tb液体标准沸点,; Ts液体的平均热容,J/(Kg) Hv液体的蒸发热,J/Kg;如果不能得到所需资料,那么Cp/ Hv可取0.0044。由闪蒸产生的释放量由下式计算:AQf=5FvL式中:AQf由闪蒸产生的释放量,Kg/s;如果Fv0.2,那么AQf=L,并且不形成液池。确定液池尺寸进入液池总液体总量Wp由下式

8、表示:Wp=Wt(1-5FVn)式中:Wp由闪蒸产生的释放量,Kg;如果泄漏的液体没有充满围堤或流到围堤外,则液池表面积按下式计算:Ap=100Wp/1式中:Ap液池面积,m2当泄漏的液体进入围堤并充满整个围堤,则液池面积等于围堤面积减去储罐占有的面积。确定从液池表面蒸发产生的释放量从液池表面蒸发产生的释放量按下式计算:AQp=9.010-4 Ap 0.95MWw Pv(T+273)式中:AQp液池表面蒸发释放量,Kg/sMW相对分子量;Pv液体在特定液池温度下的蒸气压,KPa;T特定液池温度,;如果液体温度等于或高于环境温度,而低于标准沸点,液池温度等于操作温度。如果液体温度等于或大于沸点,

9、液池温度是液体的标准沸点。标准沸点指液体在大气压下的沸点。 确定大气中的释放量大气中总的释放量由下式表示:AQ=AQf+AQp式中:AQ大气中总的释放量,Kg/s8.5 气体扩散模拟由于氨球罐区、甲醇灌区、二甲醚罐区均设置有围堤,泄漏的液体物料会在围堤内形成液池,气体物料(天然气外管泄漏、丁烷储罐连接管泄漏)泄漏点接近地面,因此其扩散模式选用在地面连续释放的扩散模式: Q 1 y2 z2Cxyz= exp- ( + )yz 2 2y 2z 式中:Cxyz给定某一点(x,y,z)的浓度,mg/m3Q连续质量释放量,Kg/s;yz扩散相关系数;y横风向距离;z离地面的高度风速,m/s8.6 评价特

10、征值的选择由于天然气、甲醇、二甲醚、丁烷的主要危害特性是泄漏的物料扩散所带来的火灾爆炸危险,因此选用天然气、甲醇、二甲醚、丁烷的爆炸下限进行模拟计算,而液氨的主要危害特性是泄漏的物料对人体的毒害性,因此选用液氨对人体的毒性影响进行评价。表8-2 评价特征值序号物料爆炸下限(mg/m3)1天然气330002甲醇802533二甲醚570004丁烷3068736表8-3 氨对人体的毒性影响序号浓度(mg/m3)对人体的影响130车间空气中最高容许浓度2210接触1h的最大耐受量31750接触半小时,可危及生命43500短时间迅速致死8.7 模拟计算结果8.7.1.1 液氨储罐出料管道完全断裂泄漏事故

11、情景表8-4 氨球罐出料管道完全断裂泄漏事故情景序号项目事故情景1泄漏源氨球罐出料管道完全断裂2泄漏状况孔径150mm3工作条件-334泄漏速率425.5kg/s515min泄漏量382953.9Kg6液池面积1216m2(围堤内面积)7气体释放速率5.4346Kg/S8.7.1.2 液氨泄漏扩散浓度分布、危险、危害距离与面积模拟计算结果表8-5 液氨泄漏扩散时蒸气浓度的分布(离地面高度1.6m) 浓度(mg/m3)下风向距离(m)风速1.01.713.554576312691953389910217048127675160782088705521796571402725816.3420195

12、01782610485132010045352668336200112466183.230049529236.740023313717.3500136801060083496.570052304048003520.63.28423017.72.8表8-6 液氨泄漏扩散时评价特征值对应扩散距离(H:1.6m) 下风向距离(m)特征浓度(mg/m3)风速1.01.713.53084270031821041733512617501601234335001138730表8-7 液氨泄漏扩散时评价特征值对应扩散面积 扩散面积(m2)特征浓度(mg/m3)风速1.01.713.53024280017080

13、03440021041000386006400175094006200200035005000320012008.7.2甲醇、二甲醚、天然气、丁烷泄漏事故情景模拟计算结果表8-8 泄漏扩散后爆炸下限浓度分布结果序号泄漏源泄漏孔径气体释放速率Kg/s风速下风向扩散距离m1天然气管道泄漏25mm0.77静风23.81.7m/s16.575mm6.89静风83.51.7m/s62.3200mm48.98静风243.51.7m/s182.62生产区到甲醇库区的甲醇管道25mm0.054静风/1.7m/s/75mm0.436静风/1.7m/s/100mm0.754静风12.31.7m/s/3生产区到二甲

14、醚库区的二甲醚管道25mm0.42静风8.91.7m/s/75mm3.76静风43.91.7m/s32.4100mm6.68静风60.51.7m/s454粗甲醇储罐25mm0.43静风/1.7m/s/75mm2.44静风281.7m/s15.5200mm2.44静风281.7m/s15.55甲醇储罐25mm0.265静风/1.7m/s/75mm0.42静风/1.7m/s/100mm0.42静风/1.7m/s/6二甲醚球罐25mm4.02静风45.61.7m/s33.575mm36.2静风253.51.7m/s114.9200mm2757.5静风4461.7m/s3347丁烷储罐25mm静风1.

15、7m/s75mm静风1.7m/s100mm静风1.7m/s8.8 本部分评价小结由模拟计算结果及泄漏事故爆炸下限浓度分布图可看出:天然气配气站管道出现大型泄漏事故后,在静风条件下,以泄漏点为圆心,半径为243.5米的下风向范围内天然气的浓度将达到爆炸下限,如果遇到点火源将会引发火灾爆炸事故。生产区到甲醇库区甲醇管道出现大型泄漏后,在静风条件下,以泄漏点为圆心,半径为12.3m的下风向范围内挥发的甲醇蒸气的浓度将达到爆炸下限,如果遇到点火源将会引发火灾爆炸事故。生产区到二甲醚库区的二甲醚管道出现大型泄漏后,在静风条件下,在以泄漏点为圆心,半径为60.5m的下风向范围内二甲醚气体的浓度将达到爆炸下

16、限,如果遇到点火源将会引发火灾爆炸事故。二甲醚库区的二甲醚球罐的进出管道出现大型泄漏后,在静风条件下,在以泄漏点为圆心,半径为446m的下风向范围内二甲醚气体的浓度将达到爆炸下限,如果遇到点火源将会引发火灾爆炸事故。其影响范围远远超过了库区的范围,对下风向的居民有一定的影响。生产区的粗甲醇储罐的进出管道出现大型泄漏后,在静风条件下,在以泄漏点为圆心,半径为28m的下风向范围内挥发的甲醇蒸气的浓度将达到爆炸下限,如果遇到点火源将会引发火灾爆炸事故。由浓度分布图可知,粗甲醇储罐泄漏后的影响范围大部分在本装置范围内,对附近装置无影响。甲醇库区的甲醇储罐出现泄漏后,由于其本身储存量小,泄漏的量也较少,

17、挥发的甲醇蒸气也基本在围堤内,基本不向下风向扩散,对甲醇罐区外的民用住宅无影响。丁烷库区的丁烷储罐出现泄漏后,其本身的储存量小(7吨以下),加上其分子量比空气重,扩散速度较慢并容易积聚在下水道或阴沟内,遇火可引起回燃,严重时可引起爆炸。但由于其位置距离主体装置和附近居民较远(100米以外),对主装置和附近居民无影响。根据有关统计资料可看出,就管道、阀门及接头而言,12mm(代表2.83-16.7mm)及以下孔径的泄漏事故占全部泄漏事故的98%,而25mm(代表16.7-31mm)以上孔径的小泄漏事故占全部泄漏事故的2%。这说明管道、阀门、法兰及接头等发生的泄漏事故绝大部分是孔径在12mm及其以

18、下的微型泄漏事故,发生中、大型泄漏事故的可能性相对较小。因此,工厂在运行过程中,应着重对管道、阀门、法兰及接头的小型及微型泄漏事故进行防范。虽然中、大型泄漏事故的可能性较小,但由于其事故后果较严重,也不能忽视这方面的管理。从液氨的毒物扩散地域图和模拟计算结果可以看出:比较静风(1m/s)、平均风速(1.7m/s)和最大风速(13.5m/s)三种情况,都存在浓度值超过最大允许浓度(30mg/m3)的区域,该区域面积在静风状态时为最大,为242800m2,对应下风向距离为842m。氨球泄漏时,在静风(1m/s)、平均风速(1.7m/s)和最大风速(13.5m/s)三种情况下都存在一个高浓度的区域,

19、如短时间致死浓度3500mg/m3的区域也以静风状态时最大,其对应下风向距离为113m。对扩散模拟计算结果分析可知,在静风条件下,泄漏的氨的危害区域最大,平均风速下次之,而在最大风速条件下,其危害范围最小。从工厂的平面布置图可以看出,液氨球罐处于工厂的中心,位于工厂的生产辅助设施、办公区及生活区主导风向(NE风向)的上风向。当液氨球罐发生泄漏事故后,氨气的扩散范围(评价特征值30mg/m3)最大为842m,工厂的大部分辅助生产设施及办公区、以及少部分生活区将处于氨气的笼罩氛围内,将对处于这些区域内的人员带来危害,但由于公司在液氨球罐区设置有计算机自动监控装置,对液氨罐区情况进行严密的监视,同时还修建有泄漏事故处理围堰、设置了事故喷淋水装置、消防水炮等设施,可对液氨泄漏事故进行应急处理,为处于危害区域内的人员疏散赢得时间。由于氨是一种刺激性较大的毒性气体,吸入少量的高浓度的氨就会引起中毒、窒息,甚至死亡,并且液氨储罐泄漏后其扩散氛围很大,因此工厂在运行中一定要对液氨球罐采取严格、安全的监控措施,防止出现液氨储灌泄漏事故。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1