ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:22.92KB ,
资源ID:4555537      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4555537.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(机械可靠性英文文献及翻译.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

机械可靠性英文文献及翻译.docx

1、机械可靠性英文文献及翻译MechanicalReliabilitySimulationJianfengXu,YalianXie,DanXuShanghaiInstituteofProcessAutomationInstrumentationShanghai,PRCGenerallyamechanicalsystemiscomposedAbstractThisarticleprovidesanumericalmethodtosimulatethereliabilityofacomplicatedmechanicalsystemwithmultipleinputrandomparameters.T

2、hemethodbasesonthetheoryofmechanicalreliabilityandusesacommercialFEMsoftware,ANSYS.ThequantitativereliabilityofthemechanicalsystemisobtainedbyMonteCarlosimulation.Themethodisverifiedbytheoreticalanalysisandisappliedtoarealstructure.Thismethodhaspreventedthetediousmathematicalcalculationandismoreecon

3、omicalthanexperimentalmethods.Itcanbeusedasacomplementoftraditionalexperimentalmethods.KeywordsMechanical Reliability; FiniteElementMethod;MonteCarloSimulationI.INTRODUCTIONBasedonthenationalstandardGB/T3187-19941,reliabilityhasbeendefinedas“theprobabilitythataproductwillsatisfactorilyperformitsinte

4、ndedfunctionundergivencircumstancesforaspecifiedperiodoftime”.Reliabilityhasbeenviewedasoneofthemostcriticalparametersfortheproducts.Forexample,itissaidinUSthatreliabilitywillbethefocusofcompetitionforthefutureproducts.MostJapanesecompaniestakemorereliableproductastheirmainobjectiveforcompanydevelop

5、ment.Therefore,toaccuratelypredictthereliabilityoftheproduct,andtooptimizethedesignbasedonthereliabilityrequirementsisverymeaningful.bymanyparts.Asystemsreliabilityisdeterminedbymanyparameters,suchasthenumberofcomponents,thequalityofthecomponentsandalsohowthosecomponentsareassembled.Itisalsorelatedt

6、othematerialproperties,manufacturingtechnologies,dimensiontolerancesandsoon.Mostofthereferencescurrentlyavailablearefocusedonthetheoreticalderivationforreliabilitycalculation,however,duethecomplexity,itNormallythestructuralmaximumstressandthematerialstrengtharedistributedwithcertainprobabilitydensit

7、y.Figure1showsanexampleofthedistribution,inrequirestediousmathematicalcalculation.Anothermethodtoobtainthereliabilityofawhichf()andg(s)representthesystemisbyexperiments,whichrequiresenoughsamplesandtestingtime,thustheexperimentalmethodcanonlybeapplicabletothosemostcriticalsystems.Thisarticleusesmech

8、anicalstrengthreliabilityasanexample,illustrateshowFEMcanbeappliedtothereliabilitysimulation.maximumstressandmaterialstrength,respectively.InFigure1(a),sinceisalwayslargerthanreliabilityofthestructureis1.However,inFigure1(b),itisnotThemethodemployscommercialFEMsoftware,ANSYS,andtakesadvantageofthein

9、tegratedMonteCarlosimulationfunction.Asimpleexampleisanalyzedtoverifythecorrectnessguaranteedthat).Thereisang(s)belargerthanf(ofthemethod.Theverifiedmethodisthenappliedtoarealstructuretoobtainthequantitativereliabilityofacomplexsystemwithmultipleinputrandomparameters.II.STRENGTH-STRESSINTERFERENCETH

10、EORYinterferencezoneinthedistribution,asshownintheshadedareaandzoomedinFigure2.Thusthereliabilityofthestructureislessthan1.Basedonthemathematicalderivation,thereliabilitycanbecalculatedbyintegrationwiththedistribution.978-1-61284-666-8/11$26.00 2011IEEE1147R=P( s)=+ g(s)dsd+ f()III.METHODDESCRIPTION

11、ThecommercialFEMpackageANSYShasaPDSf() g(s)(a)(ProbabilisticDesignSimulation)module2.Themoduledefinesdimension,materialpropertiesandotherparametersasrandomvariableswithcertaindistributions.Theoutputstressanddisplacementcanbedefinedasresultsvariables.SamplesarecollectedbasedonMonteCarlomethodtoobtain

12、thedistributionoff()(b)g(s)outputvariables.WiththePDSmodule,asuitableanalysisfileshouldbefirstlygeneratedtodefinethesimulationprocessandtodefinetheinputandoutputvariables.Ifnecessary,correlationbetweeninputparameterscanalsobedefined.MonteCarlomethodisthenemployedtocollectenoughsamplesforsimulation.S

13、inceeachrunisindependent,theFigure1Stressandstrengthdistributiong(s) f()Figure2Stress-strengthinterferencezoneTocreateanalysisfileandtodefineparametersTodefinetheinputrandomparametersanddistributionsTodefinecorrelationsbetweeninputTodefineoutputrandomvariablesTodefinemethodforprobabilisticsimulation

14、ResponsesurfacesimulationResultsreviewFigure3.Flowchartforstrengthmethodissuitableforparallelruntosavetime.Generally50200samplesarecollectedinMonteCarlomethodtoinsurethecorrectnessoftheresults.Insomecases,theoutputvariableisasmoothfunctionoftherandominputvariables.withlimitedtime.Basicallytheflowcha

15、rttosimulatethestrengthreliabilitywithANSYScanbeshowninFigure3,inwhichthedashedstepsindicatetheyareoptional.IV.VERIFICATIONSANDAPPLICATIONSThecorrectnessofthemethodisverifiedbyatensionrodwhichisanexampleinthereference3.TheInsuchcases,theresponsecanbeapproximatelyevaluatedbyatensionPN(29400,441)N,mat

16、erialmathematicalfunction.Byassessingthecoefficientsinthefunctionwiththesamplingpointsandruns,responsestrengthSN(1054.48,41.36)Nmm2,radiusoftherodsurfacecanbedeterminedandnumerousrunscanbeconductedrN(3.195,0.016)mm,theoreticaltoobtainbetterdistributionscalculationshowsthereliabilityoftherodis0.999.1

17、148reliabilityofapressurevessel.TheshapeandparameterdistributionsareshowninFigure6.BarelementPFigure4.FEMmodel(a)MonteCarloSimulationthestrength-stressdifference,whereKPaisunit.The method is then applied toanalyze the(b)ResponseSurfaceSimulationFigure5.Histogramofstrength-stressdifferenceWithANSYS,t

18、herodismodeledasabarelementwhichisfixedinonend.Thetensionisappliedattheotherend.TheaxialstressiscalculatedinANSYS.Thetensionforce,radiusandmaterialstrengtharedefinedasrandominputvariablesinPDS.Theoutputvariableisdefinedasthedifferencebetweenthestrengthandmaximumstress.Avaluelessthan0indicateastrengt

19、hfailure.OnehundredsamplesarecollectedwithMonteCarlomethod.Resultsshowthatthedifferenceapproximatelyfollowsanormaldistributionwithnormal137.73Nandvariance45.42N.Lateron,responsesurfaceareobtainedbasedontheprevioussamplesand10000runsareconducted.Thenormalandvariancecanbebetterobtainedas137.65Nand44.5

20、2N,respectively.Fromwhichitisconcludedthatthereliabilityoftherodis0.9988and0.9990withthetwomethods.Thisresultmatcheswellwiththetheoreticalcalculationwhichdemonstratesthecorrectnessofthemethod.Figure4showstheFEMmodel,andFigure5isthehistogramofrLFixedrU1990,2010mmLU9990,10010mmThicknessU7.5,8.5mmPress

21、ureU2800,3200KPaYoungsModuleN(200,10)GPaYieldStresN(1000,50)MPaFigure6PressureVesselInPDSmodule,therandominputparametersaredefinedinaccordancewithFigure6.With50MonteCarlosamplingpoints,thesimulationshowsthatthedifferencebetweenstrengthandstresscanbeapproximatelydescribedasanormaldistributionN(229.22

22、,67.251)MPa.AfurtherresponsesurfacesimulationdemonstratesthatthedifferencematchthedistributionasN(228.86,65.823)MPa,asshowninFigure7.Fromthesedistributions,thereliabilityofthe1149pressurevesselcanobtainedas0.99967and0.99974,respectively.(a)MonteCarloSimulation(b)ResponseSurfaceSimulationFigure7.Stre

23、ngth-stressdeviationhistogramofpressurevesselV.CONCLUSIONSFEMandMonteCarlosimulationmethodcanbeintegratedtoobtainthemechanicalreliabilityofacomplexstructurewithmultipleinputrandomparameters.Althoughthisarticleconsidersonlythestaticcases,themethodcanalsobeappliedtodynamiccaseswithsuitableanalysisfile

24、.Themethoddescribedinthisarticlepreventstediousmathematicalcalculation.Thestructurereliabilitycanbeobtainedwithlesstimeandmoney.Thismethodcanbeacomplementofthetraditionalexperimentalmethods.REFERENCES1ReliabilityandMaintainabilityterms,GB/T3187-942ANSYSHelp,ANSYSCorp3LiuP.,BasicofReliabilityEngineer

25、ing,MetrologyPress,2002中文翻译:机械可靠性仿真JianfengXu,YalianXie,DanXu上海工业自动化仪表研究所上海,中华人民共和国摘要:本文提供了一种多输入随机参数模拟复杂机械系统的可靠性计算方法。该方法基于可靠性理论,采用商业有限元软件ANSYS。机械系统的可靠性定量是通过蒙特卡罗模拟。该方法是通过理论分析验证和实际应用的结构。该方法避免了繁琐的数学计算和比实验方法更经济。它可以作为传统实验方法的一种补充。关键词:机械可靠性;有限元;蒙特卡罗仿真方法。一、引言根据国家标准GBT3187-19941,可靠性被定义为“在一定的条件下在指定的一段时间内,一个产品

26、很好地履行其预期的功能的概率”。可靠性一直被看作是一个产品的最重要的参数。例如,据说在美国,可靠性将是今后产品竞争的焦点。大多数日本企业以更可靠的产品作为公司发展的主要目标。因此,为了准确地预测产品的可靠性,并优化基于可靠性要求的设计是非常有意义的。一般的机械系统是由许多部分。一个系统的可靠性取决于许多参数,如组件的数量,质量的部件和这些部件组装。这也与材料的性质,相关的制造技术,尺寸公差等有关。大多数现有的文献主要集中在可靠性理论推导计算,然而,由于它的复杂性,需要繁琐的数学计算。还有一种实验法来获得系统的可靠性试验,需要足够的样本和测试时间,因此,实验方法只能适用于那些最重要的系统。本文采

27、用机械强度可靠性为例,说明了有限元法可以应用于可靠性仿真。该方法采用商业有限元软件,ANSYS,并利用MonteCarlo模拟功能集成。一个简单的实例分析验证了该方法的正确性。这种验证的方法随后便应用到实际结构,来获得多输入随机参数的一个复杂系统的可靠性定量。二、拉压干涉理论。通常情况下,结构的最大应力和材料强度的分布有一定的概率密度。图1显示的分布的一个例子,在f()和g(s)分别代表最大应力和材料强度的情况下。图1(a)中因为g(s)总是大于f(),结构的可靠度是1。然而,在图1(b),它是不能保证g(s)大于f() 。图中分布着一个干扰区,如图所示,在阴影区域和放大的图2。因此,结构的可靠度小于1。基于数学推导的可靠性,可以按照分布做一体化计算。R=P( s)= + f()

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1