ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:4.93MB ,
资源ID:4462837      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4462837.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(应用稀土氧化物冶金技术改善高强钢焊接性能.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

应用稀土氧化物冶金技术改善高强钢焊接性能.docx

1、应用稀土氧化物冶金技术改善高强钢焊接性能应用稀土氧化物冶金技术改善高强钢焊接性能摘 要在高强钢中加入510-6和2310-6稀土Ce,研究了Ce对焊接热影响区冲击韧性、微观组织、原奥氏体晶粒以及焊接接头断口形貌的影响与机理。钢中含Ce量为510-6时,能在镁铝夹杂物外围生成少量CeAlO3夹杂物,但不能完全改性镁铝夹杂物,当Ce 添加量达到2310-6后,Ce 能够完全改性MgOAl2O3尖晶石,生成(CeCa)S+MgOAl2O3+MnS稀土夹杂物。对含有Ce的高强钢板进行模拟焊接,结果表明,在4组不同焊接热输入条件下,钢中加入2310-6Ce后,比钢中加入510-6Ce的钢焊接热影响区的C

2、harpy冲击功有所提高。微观组织分析发现,2310-6Ce含量的高强钢试样焊接热影响区断口形貌呈现韧窝状,韧性更好;当热输入从25 kJ/cm逐步提高到100 kJ/cm时,含510-6Ce的高强钢热影响区原奥氏体晶粒平均尺寸增加了75.6%;含2310-6Ce的高强钢的原奥氏体晶粒平均尺寸增加了52.4%,即钢中Ce含量的增加抑制了焊接热影响区原奥氏体晶粒的长大。通过微观组织分析对比,说明稀土Ce在高强钢中起到了延迟焊接热影响区上贝氏体组织形成的作用,同时抑制焊接过程中原奥氏体晶粒的长大。利用高温共聚焦显微镜观察到了稀土夹杂物钉扎于原奥氏体晶界,抑制焊接过程中晶粒的长大,验证了稀土Ce对高

3、强钢焊接热影响区性能改善的机理。本工作表明应用稀土氧化物冶金可以改善稀土高强钢的焊接性能。关键词高强钢,热影响区,氧化物冶金,稀土焊接热影响区(heataffected zone,HAZ)是高强钢焊接接头起裂及脆性破坏的多发部位,焊接热输入导致组织发生变化,粗晶区晶粒粗大,韧性下降,成为整个焊接接头的薄弱区13。氧化物冶金技术从母材的角度入手,控制钢中氧化物的形态,使其尺寸细化并弥散分布,在焊接过程中起到阻止奥氏体晶粒长大、促进针状铁素体形核的有益作用4,对钢铁材料的焊接加工意义深远。日本新日铁公司开发出通过细小的粒子得到微细组织和超高的HAZ 韧性(super high HAZ toughn

4、ess technology with fine microstructure imparted by fine particles,HUTFF)技术,利用在1400 以上高温仍能稳定存在的碱土金属(Ca、Mg)的氧化物或者硫化物,使这些细小的夹杂物弥散分布在钢中钉扎晶界,抑制焊接过程中奥氏体晶粒的长大5。日本钢铁公司开发的大线能量焊接热影响区韧性改善(excellent quality in large heat input welded joints,EWEL)技术,利用氮化物和氧化物共同抑制奥氏体晶粒的粗化,使热影响区奥氏体晶粒细化6;结合低C 当量,使焊接热影响区的上贝氏体转变为铁素体

5、+贝氏体或者铁素体+珠光体,改善焊接后韧性7,8。Yang等9利用Mg脱氧剂改善焊接热影响区的韧性,开发出利用强脱氧剂改善焊接热影响区韧性(excellent heataffected zone toughness technology improved by use of strong deoxidizers,ETISD)的技术,在大热输入焊接之后,原奥氏体粒子尺寸细小,焊接热影响区冲击韧性优异。氧化物冶金的研究工作主要集中在Nb、Ti、Mg、Zr等元素,并结合降低C含量的方法,这些研究的共同点是利用微细夹杂物粒子促进晶内针状铁素体的生成,同时抑制焊接过程中原奥氏体晶粒的长大。对于如何提高高

6、强钢的强度和韧性,已有大量研究1015。但对于钢中含Ti和含Ca的氧化物夹杂而言,它们在钢液中容易聚集长大,尺寸多为几个微米甚至更大;还有些高C当量的高强度钢板,在焊接热循环过程中原奥氏体晶粒会急剧长大,在冷却过程中焊接热影响区不会生成铁素体组织,易产生大量上贝氏体组织从而恶化焊接性能,因此采取了降低热输入、焊接预热、焊后热处理等办法,但增加了成本并降低了生产效率1620。稀土元素在钢中能够发挥独特作用,稀土在钢中主要偏聚于晶界,引起晶界结构、性能的变化,并影响其它元素的扩散和新相形核与长大,导致钢的组织和性能发生变化。控制钢中稀土夹杂物的数量、尺寸、形貌和成分是发挥其氧化物冶金作用的基础21

7、25。本工作通过实验室和工业实验,开发了一种提高焊接性能的稀土氧化物冶金技术(enhanced welding properties via rare earth oxide metallurgy technology,REOMT),从母材入手提高材料的焊接热影响区冲击韧性,改善高C当量高强度钢板的焊接性能,加大热输入提高焊接生产效率。对工业试制的高强钢板经模拟焊接,研究其焊接性能与微观组织的关系,证明适量的稀土Ce添加能够改善高强钢的焊接性能。1 实验方法采用210 t 顶底复吹转炉210 t 钢包炉精炼(ladle furnace,LF)210 t 真 空 循 环 脱 气 精 炼(rhrs

8、tahl heraeus,RH)300 mm2200 mm 立弯式宽厚板铸机浇铸3800 mm 四辊可逆粗轧机4100 mm 四辊可逆精轧机层流加速冷却(ACC)升温至910 保温1020 min,淬火至150 以下回火至620 ,保温30 min,空冷至室温,制备成厚钢板。选用510-6Ce、2310-6Ce 含量的700 MPa 级高强钢板,依据Ce 含量的不同试样命名为5Ce、23Ce,具体化学成分见表1。首先,利用带有Thermo NS7 能谱仪(EDS)的JSM6701F 冷场发射扫描电镜(SEM)观察和分析不同Ce 添加量后的母材典型夹杂物形貌和成分;然后将钢板加工成10.5 mm

9、10.5 mm75 mm 试样,使用Gleeble3500 热模拟机模拟高强厚板的焊接热循环过程。焊接热模拟过程为:按Rykalin2D 模型分别模拟焊接热输入为25、50、75 和100 kJ/cm,峰值温度为1350 ;将上述热模拟试样在WDW2000 万能拉伸试验机上做拉断实验,再从热电偶焊点处横向截开标记截面,至标记面以下10 mm 处截下镶嵌,对标记面预磨、抛光,利用Quanta250 SEM 观察夹杂物和断口形貌;之后将抛光试样用4% (质量分数)硝酸酒精溶液侵蚀后,用DM4M 光学显微镜(OM)观察显微组织;重新打磨抛光并在80 恒温下侵蚀一定时间,使用DM4M OM 观察原始奥

10、氏体晶粒,并用ImagePro Plus 软件统计原始奥氏体晶粒尺寸;将模拟热输入的试样与母材加工成10 mm10 mm55 mm的“V”型Charpy 试样,利用ZBC2752A750J 冲击试验机测定各试样常温下冲击功。再将含Ce 高强钢试样加工为直径5 mm3 mm 的圆柱状试样,通过VL2000DXSVF17SP 高温共聚焦显微镜观察不同温度时夹杂物对晶界的钉扎作用。将含Ce 高强钢加工成直径15 mm90 mm 试样,表面打磨干净,试样作阳极,铜片作阴极,通过小样电解收集钢中析出物。将电解提取的析出物过滤、淘洗后利用Quanta250 和带有EDS 的JSM6701F SEM 进行夹

11、杂物形貌分析。2 实验结果与讨论2.1 稀土对高强钢夹杂物的影响表2 为不同Ce 含量高强钢试样的力学性能。图1和2为不同Ce含量母材夹杂物形貌的SEM像及EDS 分析结果。以图1 为例,根据面扫描结果可以看出,O、Al、Mg元素在夹杂物中的分布一致,对于铝脱氧钢,当钢液中有少量Mg时,易形成镁铝尖晶石夹杂物26,因此可认定图1 中夹杂物中心处的黑色部分为MgOAl2O3。MgOAl2O3外围为(CaMn)S 和CeAlO3,因此,稀土Ce含量为510-6时,钢中夹杂物为MgOAl2O3+(CaMn)S+CeAlO3;Ce 含量为2310-6时,钢中的夹杂物类型是(CeCa)S+MgOAl2O

12、3+MnS。面扫描分析结果表明,当Ce 添加量较低时,不能完全改性MgOAl2O3夹杂物,只能在MgOAl2O3外围生成少量CeAlO3夹杂物,当Ce 添加量达到一定量后(2310-6),Ce 能够完全改性MgOAl2O3尖晶石,生成稀土硫化物夹杂物。2.2 焊接热影响区冲击韧性使用Gleeble3500 热模拟机模拟高强厚板的焊接热循环过程,热模拟的焊接参数如表3所示,热影响区焊接热模拟过程如图3 所示。可以看出,焊接热输入越大,焊后的平均冷却速率越小。不同热输入条件下的焊接热影响区室温冲击功见图4。可以看出,随着焊接热输入的增加,试样的室温冲击功均呈下降趋势,而相同焊接热输入下,Ce含量为

13、2310-6试样的冲击性能明显好于Ce含量为510-6的试样。钢中加入适量的稀土,提高了相同热输入下试样热影响区的冲击功。表1 不同Ce含量高强钢的化学成分Table 1 Chemical compositions of high strength steel with different Ce contents(mass fraction/%)表2 不同Ce含量高强钢的力学性能Table 2 Mechanical properties of high strength steel with different Ce contentsNote: ReLyeild strength, Rmten

14、sile strength, Aelongation,AKVimpact energy at-20 图1 5Ce试样中典型夹杂物MgOAl2O3+(CaMn)S+CeAlO3的SEM像和EDS分析Fig.1 SEM image and EDS analyses of typical inclusions MgOAl2O3+(CaMn)S+CeAlO3in 5Ce steel图2 23Ce试样中典型夹杂物(CeCa)S+MgOAl2O3+MnS的SEM像和EDS分析Fig.2 SEM image and EDS analyses of typical inclusions(CeCa)S+MgOA

15、l2O3+MnS in 23Ce steel2.3 焊接热影响区微观组织不同Ce含量试样在不同焊接热输入下HAZ 显微组织的OM像如图5和6所示。可以看出,焊接热输入为25 kJ/cm时,不同Ce含量试样的HAZ显微组织均为马氏体组织;热输入提高到50 kJ/cm 时,Ce含量为510-6的试样HAZ组织为上贝氏体和粒状贝氏体组织,Ce 含量为2310-6的试样HAZ 组织为马氏体和下贝氏体组织;热输入继续增加至75 kJ/cm,Ce含量为2310-6试样的HAZ才开始出现少量上贝氏体组织,继续增加热输入至100 kJ/cm时,不同Ce含量试样HAZ显微组织均为粗大、脆性的上贝氏体和粒状贝氏体

16、混合组织。可见,在焊接时含有2310-6Ce 的试样,Ce 可阻滞HAZ 中上贝氏体组织的形成。表3 热模拟焊接参数Table 3 Parameters of simulated welding thermal cycleNote: t8/5the time for the cooling from 800 to 500 at a specific cooling rate图3 热影响区(HAZ)焊接热模拟过程Fig.3 Thermal simulation process of heataffacted zone(HAZ)2.4 焊接接头断口形貌图4 不同热输入条件下的焊接热影响区室温冲击功

17、Fig.4 Impact energies of HAZ under different heat inputs at room temperature图5 5Ce试样不同焊接热输入下热影响区显微组织的OM像Fig.5 OM images of HAZ in 5Ce steel under heat inputs of 25 kJ/cm(a),50 kJ/cm(b),75 kJ/cm(c)and 100 kJ/cm(d)不同Ce 含量试样在不同焊接热输入下断口形貌的SEM 像如图7 和8 所示。可以看出,热输入为25 kJ/cm时,不同Ce含量试样断口心部主要由大韧窝和小韧窝组成;热输入增加到

18、50 kJ/cm 时,Ce 含量为510-6试样断口心部基本没有韧窝,出现了较大的解理面,而Ce 含量为2310-6试样断口心部由小解理面、小韧窝及剪切脊组成。随着热输入继续增加,2种Ce含量试样断口心部韧窝全部消失,形成了大片状的解理面,且热输入越大,试样断口心部解理面越大,验证了随着Ce 含量的增加,试样焊接热影响区的室温冲击功提高。图6 23Ce试样不同焊接热输入下热影响区显微组织的OM像Fig.6 OM images of HAZ in 23Ce steel under heat inputs of 25 kJ/cm(a),50 kJ/cm(b),75 kJ/cm(c)and 100

19、kJ/cm(d)图7 5Ce试样不同焊接热输入下断口形貌的SEM像Fig.7 SEM fractographs of 5Ce steel under heat inputs of 25 kJ/cm(a),50 kJ/cm(b),75 kJ/cm(c)and 100 kJ/cm(d)2.5 焊接热影响区原奥氏体晶粒不同Ce 含量试样不同焊接热输入下焊接热影响区原奥氏体晶粒形貌的OM 像如图9 和10 所示。不同Ce 含量试样原奥氏体晶粒尺寸统计如表4 所示。可以看出,随着焊接热输入的增加,原奥氏体晶粒均逐渐变大。相同热输入下,含510-6Ce 高强钢的原奥氏体晶粒平均尺寸由40.2 m 增加到7

20、0.6 m,增加了75.6%;含2310-6Ce 高强钢的原奥氏体晶粒平均尺寸由47.3 m 增加到72.1 m,增加了52.4%;总体看,试样经焊接后的HAZ晶粒平均尺寸随Ce 含量提高增幅减缓,表明钢中加入稀土Ce能够细化晶粒,抑制焊接过程中奥氏体晶粒长大。图8 23Ce试样不同焊接热输入下断口形貌的SEM像Fig.8 SEM fractographs of 23Ce steel under heat inputs of 25 kJ/cm(a),50 kJ/cm(b),75 kJ/cm(c)and 100 kJ/cm(d)图9 5Ce试样不同焊接热输入下热影响区原奥氏体晶粒形貌的OM像Fi

21、g.9 OM images of HAZ original austenite grain in 5Ce steel under heat inputs of 25 kJ/cm (a), 50 kJ/cm (b), 75 kJ/cm(c)and 100 kJ/cm(d)2.6 稀土夹杂物钉扎晶界作用通过高温共聚焦显微镜在线观察23Ce 试样不同温度时夹杂物对晶界的钉扎情况,结果如图11所示。高温下晶界处的蒸发比晶粒内部更为强烈,晶界处的原子通过表面扩散形成热蚀沟,从而逐渐显现出奥氏体晶粒的轮廓,图11中较深和较浅的热蚀沟分别为老的晶界和新晶界。新晶界需要通过原子扩散显露,老的晶界也相应地通过原

22、子扩散而逐渐宽化、填平、最终消失,不同温度下形成的热蚀沟需要足够的时间才能填平,因而可能出现新、旧奥氏体晶界(热蚀沟)共存的现象27。从图11 可以看出,当试样从1488.5 保温,随着保温时间的延长,原奥氏体晶界(图中红色虚线标记)逐渐沿箭头方向推移,时间为1030.1 s 时,图中箭头标识的2 条晶界合并为一条(图11d),并且可以观察到夹杂物钉扎于晶界。继续保温37.7 s 后,夹杂物钉扎的原奥氏体晶界脱钉(图11e)。这表明,细小的稀土夹杂物可以有效钉扎于晶界,抑制晶界迁移,阻止晶粒长大。不同焊接热输入时23Ce 试样在不同温度范围的持续时间如表5 所示,表中持续时间是指钢样在模拟焊接

23、实验中,处于该温度段的时间。从表5 可以看出,随着焊接热输入的增加,试样在高温下的持续时间逐渐增大。焊接热输入为100 kJ/cm 时,1300 以上的持续时间为14.08 s。由图11d和e可以看出,保温37.7 s 之后,原奥氏体晶界才会脱钉。因此,稀土夹杂物可以钉扎原奥氏体晶界,抑制焊接过程中晶粒的长大。2.7 稀土夹杂物形貌从图1214 可以观察到,将23Ce 试样电解后分析,试样中有夹杂物和碳氮化物,夹杂物有Al2O3、MgOAl2O3尖晶石和稀土夹杂物,Al2O3、MgOAl2O3尖晶石呈不规则形状;钢中还有(Nb, Ti)(C, N)和Mo、Cr 的碳化物,由于钢中C 含量及Mo

24、、Cr 等合金元素含量较低,因此Mo、Cr的碳化物均为二次碳化物,尺寸较小,约几百纳米。图14 显示了背散射模式(图14a)和二次电子模式(图14b)下含稀土夹杂物形貌照片,可以观察到稀土夹杂物主要为球形,其成分与前文SEM分析结果一致。表4 不同热输入条件下的焊接热影响区的原奥氏体晶粒尺寸Table 4 Grain sizes of original austenite in HAZ under different heat inputs(m)图10 23Ce试样不同焊接热输入下热影响区原奥氏体晶粒形貌的OM像Fig.10 OM images of HAZ original austenit

25、e grain in 23Ce steel under heat inputs of 25 kJ/cm (a), 50 kJ/cm (b), 75 kJ/cm(c)and 100 kJ/cm(d)图11 23Ce试样高温共聚焦观察实验结果Fig.11 High temperature confocal observation results of 23Ce steel (Original grain bounaries (dashed lines) move in the direction of arrows)(a)987.2 s,1488.5 (b)1012.7 s,1484.0 (c)1

26、023.9 s,1488.5 (d)1030.1 s,1482.0 (e)1067.8 s,1475.6 (f)1202.4 s,1453.0 表5 不同焊接热输入时23Ce试样在不同温度持续时间Table 5 Holding time of 23Ce steel at different temperatures under different heat inputs(s)图12 23Ce试样电解后夹杂物SEM像及EDS分析Fig.12 SEM images and EDS analyses of inclusions in 23Ce steel after electrolysis(ac)

27、MgOAl2O3(d)Al2O3图13 23Ce试样电解后碳氮化物的SEM像和EDSFig.13 SEM images and EDS of carbonitride in 23Ce steel after electrolysis(a,b)Ticarbonitride (c)Mocarbonitride (d)Crcarbonitride图14 23Ce试样电解后含稀土夹杂物SEM像及EDS分析Fig.14 SEM images and EDS analyses of Cecontained inclusions in 23Ce steel after electrolysis(a)back

28、scatter mode (b)secondary electronic mode3 结论(1)随着焊接热输入的增加,焊接热影响区显微组织逐渐从马氏体、下贝氏体转变为上贝氏体和粒状贝氏体组织。在Ce 含量较低时,热输入为50 kJ/cm时,热影响区就出现了上贝氏体组织,而Ce含量为2310-6的试样,热输入为75 kJ/cm时热影响区才形成了上贝氏体组织,表明适量稀土延迟了高强钢焊接热影响区上贝氏体组织的形成。(2)随着焊接热输入增加,原奥氏体晶粒尺寸呈增加趋势。热输入从25 kJ/cm 提高到100 kJ/cm,含510-6Ce 高强钢的原奥氏体晶粒平均尺寸增加了75.6%;含2310-6Ce 高强钢的原奥氏体晶粒平均尺寸仅增加了52.4%;试样Ce含量越高,其焊接热影响区原奥氏体晶粒尺寸增幅越小,表明稀土能够抑制焊接过程中原奥氏体晶粒的长大。(3)添加稀土Ce后,高强钢中的夹杂物类型发生了改变,产生了稀土氧硫化物夹杂。试样中有稀土夹杂物和碳氮化物2类,钢中稀土夹杂物主要为球形,钢中Mo、Cr的碳化物均为尺寸较小的二次碳化物。(4)含有弥散稀土氧化物的高强钢母材焊接热影响区韧性更好,原因是试样中的稀土夹杂物可以钉扎原奥氏体晶界,有效抑制焊接过程中晶粒的长大。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1