ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:906.17KB ,
资源ID:4402900      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4402900.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(能量释放率断裂能摘自simwe论坛.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

能量释放率断裂能摘自simwe论坛.docx

1、能量释放率断裂能摘自simwe论坛能量释放率的计算是基于最小势能原理推导来的,而势能=应变能外载荷做功摩擦力做功(可能转化为热能)其他能(如声能等)。一般情况下,如果没有转化为其他能量的话,那么此时的裂纹扩展的断裂力学参量就是应变能释放率;如果不是,则称为能量释放率。断裂能是材料固有的特性,和断裂韧性是一致的。能量释放率是实际的裂纹扩展参数,是一个动态演化的变量,它表明了裂纹推进一定长度需要的能量。断裂与失效abaqus断裂韧性扫盲贴复制链接最近论坛上很多人都开始搞xfem,里面有几个参数比较令人痛苦,比如断裂韧性KIC(fracture thoughness)和裂纹表面能G(fracture

2、 energy)。首先要知道的是,这两个参数都不是通过abaqus仿真能得到的,而是材料本身的特性,跟密度一样,是先天决定的。所以你要想得到这两个数值,只有两个途径:查文献,或者做实验。第二,解释一下这两个属性的定义。早在1920年,格里菲斯就从能量平衡的观点研究了玻璃的脆断。他证明了,对于弹性体中预先存在的一条裂纹,当总位能的减小等于或超过两个新的裂纹表面的表面能时,裂纹就会发生扩展。之后他又研究了裂纹尖端附近的应力场,发现当裂纹前端的应力场强度达到材料的某一临界值时,裂纹就将发生扩展。前者的临界能量就是裂纹表面能,后者的临界应力场就是断裂韧度。众所周知,裂纹大体分为三类,I,II,III,

3、文献3中有详述。这里只对第一类裂纹举例。如上图所示的裂纹中,应力强度因子的表达式为由此可知,应力强度因子与裂纹尖端附近区域内点的坐标无关,它与应力场有关,与裂纹的形状和裂纹的尺寸及方向有关,与载荷的大小和作用方向有关,与材料的某些常数有关,所以应力强度因子可以有效地反映裂纹尖端应力场强度。用abaqus可以算出裂纹尖端的应力强度因子如下图所示,但是临界应力强度因子既断裂韧性却是一个固定的常数,是材料本身的属性,需要做试验确定。裂纹表面能与应力强度因子的关系为第三,断裂韧性的测量方法。对于断裂韧性,有很多很多种测量方法,电测、光测、声测、电磁测量,等等,文献2中有具体描述。但现在最容易实现也最常

4、见的是三点弯曲测量方法。现就这种方法对于石膏的断裂韧性测量方法简述:三点弯曲实验加载力P,最大断裂载荷就是临界载荷,代入式(5)、(6)中就可以得到断裂韧性1)实验设备:组合实验台的拉伸装置,三点弯曲夹具,游标卡尺,引伸计,电阻片2)拉伸机试样制备将石膏粉按水膏比2:1的比例倒入水中,搅拌均匀后放入磨具中,脱模后放入烘干机中烘干待用。石膏为10mm*10mm*90mm的板条试样,制造规整试件10件,试样两底面在磨片机上磨平,平行度小于0.1mm/cm。3)三点弯曲试样制备取出之前制备好的10件试样。预制疲劳裂纹。用夹劈型刃具,控制加压载荷,获得不同大小尺寸的近似半椭圆缺口,如下图所示,a/W=

5、0.5。之后用三点弯曲方法预制疲劳裂纹。三点弯曲疲劳时,将人工缺口朝上正对下压头。疲劳裂纹长度最好大于1.3mm,或应大于裂纹总长度的5%。4)将试样置于三点弯曲系统中,如下图所示。在拉伸试验机上加载,最好在13min中内拉断,记录下最大载荷Pmax计算KIC。参考文献1 先进纤维增强复合材料性能测试/(英) J.M.霍奇金森主编 白树林, 戴兰宏, 张庆明译出版发行项:北京:化学工业出版社,20052 刘宝琛 实验断裂、损伤力学测试技术 机械工业出版社,1994.93 脆性断裂力学/(苏)切列帕诺夫(,.)著 黄克智等译出版发行项:北京:科学出版社,1990可能上面的文献各位找不到,我这边扫

6、描了文献二附录中的常见材料断裂参数,希望对大家有所帮助。楼主辛苦,但是有一点不明白,裂纹表面能与应力强度因子的关系的表达式中G在断裂力学书中是表面能和单位面积所消耗的塑性变形功,不知道是一个意思,还是确实是需要加上塑性变形功,谢谢楼主。我认为裂纹表面能就是裂纹断裂时所需要的能量,也就是你所说的变形功。很多书翻译过来的名字都不一样,每个学者的叫法有时候也不同,但其实都是一个意思。就是你裂纹尖端那里,裂纹拼命想要开裂,但是内部还有分子内力不让它开裂,一旦受到的外力所做的功达到了裂纹尖端开裂所需要的能量,立刻断裂。这个能量,就是G.rosepianist 发表于 2011-10-10 19:59我认

7、为裂纹表面能就是裂纹断裂时所需要的能量,也就是你所说的变形功。很多书翻译过来的名字都不一样,每 .楼主按照你的理解,你用过断裂能计算么,就是通过K来得到G,然后把G输入到ABAQUS中,计算XFEM裂纹扩展,如果计算过,请问楼主的计算结果和实际相符么,谢谢。C.DRAGON.W 发表于 2011-10-11 10:05楼主按照你的理解,你用过断裂能计算么,就是通过K来得到G,然后把G输入到ABAQUS中,计算XFEM裂纹扩展, .呃,我就是酱紫算的。因为大多数材料给出的都是断裂韧性K而不是G.但是我木有验证仿真结果是否正确,因为那需要实验。如果做出来了,那我觉得我就可以毕业了。哎呀呀,不晓得酱

8、紫对不对,求高手解答。我认为裂纹表面能就是裂纹断裂时所需要的能量,也就是你所说的变形功。很多书翻译过来的名字都不一样,每 . 从能量观点来说,裂纹扩展需要消耗一定的能量,主要有两个方面:一、裂纹扩展形成新的表面需要消耗一定能量,假设单位面积需要的表面能为Gama,则形成两个表面,总共为2Gama;二、多数材料在断裂前会发生塑性变形,因而消耗一定的塑性变形功,设裂纹扩展单位面积需要消耗的塑性变形功为Up; 则裂纹扩展需要的总能量为R=2Gama+Up既然裂纹扩展有一定的阻力,那么要使裂纹扩展,系统必须提供足够的动力。设裂纹扩展单位面积时系统能够提供的能量为G,则裂纹扩展条件为G=R G为裂纹扩展

9、单位面积时系统提供的能量,称为应变能释放率(SERR),它与应力强度因子K (SIF)具有等效性,可以相互换算,对于线弹性材料而言,平面应力假设下,G=KK/E平面应变假设下G=KK(1-vv)/E其中v为泊松比此外线弹性条件下,G与J积分完全等价,即相等。Griffith最初的模型是建立在理性的脆性固体假设基础上的,因而消耗能量的唯一形式即形成新的裂纹面,也即上面式子中塑性变形功Up等于零。因而才有了,G等于表面能时裂纹扩展的说法。需要强调的是,Gc为断裂韧性,为材料的固有塑性。通常的断裂判据建立在应变能释放率G与断裂韧性的比较上,即当G=Gc 或K=Kc时裂纹扩展,其中Kc与Gc具有等效关

10、系。本文主要解释了xfem的基础方程的含义,阐述了虚拟节点的定义。并在对于扩展有限元的理解的基础上,对于已有的三角形子域计算方法进行了改进,在abaqus上编写了一段子程序,对三点弯曲梁断裂过程进行了仿真。具体代码没有给出,采用的是最大主应力法则。看完以后会对扩展有限元有一个基础的认识。基于ABAQUS平台的扩展有限元法.pdf(415.48 KB, 下载次数: 358)+Comparative study on finite elements with embedded discontinuities.pdf(300.79 KB, 下载次数: 180)本文综述了扩展有限元思想的发展历程,此方

11、法刚刚开始发展的时候,很多学者提出来的主要思路可以分为三类,SOS(静力最优对称方程),KOS(动力最有对称方程),SKON(静力与动力结合非对称最优方程)三大类,SOS缺点是不能反映裂纹扩展的运动过程,KOS的缺点是会导致单元拉伸与应力关系不正常,SKON则结合了商量中思想的优点,互补一下就可以解决问题,也就是xfem的基本思想了。大家可以在这篇文章中找到计算不连续单元的最基本具体迭代思想。24页,不多。慢慢看,总会有收获。+Fracture Toughness of Wood Fiber Gypsum Panels from Size_ Effect Law.pdf(398.22 KB,

12、下载次数: 166)本文主要目的就是分析准脆性材料的尺寸大小对裂纹的影响。研究的尺寸参数就是试样的厚度,初始裂纹的长度。裂纹的参数是断裂韧性,和断裂过程区域长度。如果是脆性的,那么断裂韧性的改变就是线性改变的,只要有了裂纹,有了外力,材料就会一断到底:但是准脆性材料不同,即使外力一直为常数,但是由于塑性区域的存在,断裂过程区域长度在增长,断裂韧性逐渐增,不再是线性的,而是非线性的发展:于是在这里就引进了一个等效裂纹扩展参数。这里,等效裂纹参数: D越大,临界等效裂纹参数就接近于一个常数:这个常数就是裂纹过程区域长度。文中做了相关实验,解释并验证了这个公式在某些区域内是可靠的。+扩展有限元的ABAQUS用户子程序实现.pdf(768.65 KB, 下载次数: 196)本文就前面所介绍的文献,基于abaqus平台的扩展有限元法进行了进一步扩展,比如方修军等人是假设裂纹尖端止于单元边界,这会降低xfem的精度,作者在此基础上做了改进,使得裂纹尖端不受单元的制约。并在abaqus中编写用户子程序,对于两个基础裂纹例子进行了计算并得到了相应结论:xfem的精度比普通的cfem算法无论是精度还是算法上都要好很多。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1