ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:162.15KB ,
资源ID:4263117      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4263117.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(完整版毕业设计外文翻译9570963.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

完整版毕业设计外文翻译9570963.docx

1、完整版毕业设计外文翻译9570963 Evolutions of Advanced Stamping CAE Technology Adventures and Business Impact on Automotive Dies and StampingChuantao (C.T.) WangGeneral Motors Corp. Manufacturing Engineering, Die Center, 2000 Centerpoint, Pontiac, MI 48341Abstract. In the past decade, sheet metal forming and die

2、 development transformed to a science-based and technology-driven engineering and manufacturing enterprise from a tryout-based craft. Stamping CAE, especially the sheet metal forming simulation, as one of the core components in digital die making and digital stamping, this . The stamping simulation

3、technology and its industrial applications , die developments, die construction and tryout, and production stamping. The stamping CAE community of the stamping CAE technology and business demands opens even greater opportunities and challenges to stamping CAE community in the areas of: (1) continuou

4、sly improving simulation accuracy, drastically reducing simulation time-in-system, and improving operationalability (friendliness), (2) resolving those and skidimpact lines), (3) resolving total manufacturability problems in line die operations including blanking, drawredraw, trimpiercing, and flang

5、ing, and (4) overcoming new problems in forming new sheet materials with new forming techniques. In this article, the author first provides an overview of the stamping CAE technology adventures and achievements, and industrial applications in the past decade. Then the author presents a summary of in

6、creasing manufacturability needs from the formability to total quality and total manufacturability of sheet metal stampings. Finally, the paper outlines the new needs and trends for continuous improvements and innovations to meet increasing challenges in line die formability and quality requirements

7、 in automotive stamping.INTRODUCTIONThe forming simulation-based stamping CAE technology and its industrial applications , die developments, die construction and tryout, and production stamping in the past decade1.Since the NumiSheet Conference started in 1991, stamping CAE community fundamental und

8、erstanding of sheet metal formability, forming mechanics, numerical methods, but also the most significantly, the fruitful industrial applications in a wide range of business segments.The automotive die and stamping industry benefit most from the stamping CAE. The technology advancement speeds up a

9、in automotive die development and stamping from a tryout-based craft to a science-based and technologydriven engineering and manufacturing enterprise.Stamping CAE, especially the sheet metal forming simulation, this transition 1.In General Motors, the stamping CAE technology extensively used in many

10、 ways to significantly impact on various business segments of vehicle and tooling development processes. The applications and benefits are summarized as following: Stamping CAE is used as a DFM tool (Design for Manufacturability) to assess and validate the product styling surface designs to ensures

11、a manufacturable sheet product design for a good start of vehicle program. It is used as a die engineering tool in stamping line die developments to validate and reshape binder and addendum on every new line of dies (blanking, draw,trim, flanging, and springback resolutions). It is used as a tryout

12、tool to replace soft tools and associated tryouts and to shorten ) die tryout to significantly reduce die cost and lead-time. It is used as a production tool to provide production stamping conditions (bead specifications, lube, binder tonnage, press load, blank gaging, die surface relief,gripper loc

13、ations for automation, etc.). It is used as a problem solving tool for production trouble shooting to reproduce manufacturing problems, to identify the root causes and to provide solutions for process control improvements. It is used as a simulation-based manufacturing guide to use the CAE output to

14、 drive consistency among die engineering, die construction, and production stamping. Finally, the stamping CAE is used as a learning tool to explore and gain new knowledge and application guidance for new forming techniques (tubesheet applications just a few short years.As more stamping CAE applicat

15、ion domains are explored, the more technical limitations and inadequacies are discovered. In turn, there come application-driven technology development and advancement. In this paper, the author reviews the evolutions of stamping CAE technology and its industrial applications in automotive product d

16、esign, die development and production stamping. The industrial needs for technology improvements are described. The limitations of current technology are identified and the needs for technology developments are reviewed.EVOLUTIONS OF STAMPING CAEStamping CAE technology development and industrial app

17、lications evolving in three main stages, namely, the fundamental research and lab work in 1970s-1980s, pioneer industrial trials in earlier 1990s, and the mass production applications after mid 1990s to 2000s.RESEARCH AND DEVELOPMENT (1970S-1980S)From 1970s to 1980s, the major developments were the

18、fundamental studies of sheet forming mechanics, numerical modeling, and computational methods. The research work was primarily accomplished in academia and research institutions.Reference 3 provides a comprehensive review of the research work during that period. The research topics were concentrated

19、 on numerical formulations such as membrane vs. shell, static implicit vs. Dynamic explicit), toolsheet contact, material modeling (yield functions, work early 1990s, the sheet forming industry, especially the automotive stamping, attempted the numerical simulations for large and complicated body pa

20、nels. The Big 3s in Detroit led the world in this endeavor by developing their proprietary simulationtools for large 3-dimensional problems. Stoughton 8 of General Motors developed PanelForm combining automatic mesh generation with membrane formulation based on earlier work of Wang did when same tim

21、e, Wang led theChrysler group developed C-Form and Tang in Ford Motor developed MetalForm, and both codes were based on shell formulation with static and implicit solvers. Other groups including the commercial software vendors also developed the industrialoriented software, noticeably, Pamstamp from

22、 ESI (Engineering Systems International) of France, LSDyna3d from LSTC (Livermore Software Technology Co.), both codes are based on shell formulation and dynamic explicit solver, and both Pamstamp and LSDyna3D Dyna3D, a public domain code from Livermore Laboratory, a USA government funded research i

23、nstitution. The professional conferences in numerical simulations of metal forming process in earlier 1990s, especially the NumiSheet 13-17 and NumiForm 18-25 greatly improved our understanding of all important aspects of finite element simulations of sheet metal forming. The NumiSheet Conferences p

24、rovided comprehensive exams for the readiness of the simulation technology for industrial problems. The major difficulties and challenges discovered for industrialization during that period were (1) finite element modeling ( robustness ( time ( tools (such as Pamstamp and LS-Dyna3D) with full shell

25、formulations and dynamic implicit solvers. The finite element codes with one-step membrane formulation were also got attention of the industrial users for the capabilities of using the large number of finer elements and short computation time although the accuracy of the results was questionable.The

26、 economic down turns in USA in early 1990s and the recovery efforts by the automotive industry, especially General Motors North American Operations, pushed the applications of math-based tools and process in design, engineering and manufacturing. By the mid of 1990s, the stamping CAE emerged as new

27、engineering field in die and sheet metal forming industry. A new profession stamping CAE engineer, created since then.The NumiSheet 1996 Dearborn Michigan marked the beginning of mass production applications of stamping simulations worldwide 15. In 1996, after three year intense integrated technolog

28、y development and productionization, GM North American Stamping completed its in applying simulation based digital validations for all draw dies engineered and constructed in 1990s, the industrial applications of stamping CAE technology were mainly focused on forming simulations for draw die that is

29、 the one of the line dies needed to form an automotive panel. The stamping CAE community mainly focused on predicting the traditional formability problems (splits and excessive thinning, wrinkles). GM predicting formability problems with very draw die forming. Fig. 1 illustrates excellent correlatio

30、ns between predictions and measurements for an aluminum decklid. The thinning was measured very precisely using the pinpoint micron meter at the same locations identified in simulations, and the surface strains were measured by conventional circle grids that normally bands. The thinning correlation

31、is excellent, and the predicted major andminor strains are within the measurement bands. FIGURE 1. Thinning and strains measurementsThinning FIGURE 2. Thinning comparisonMajor StrainFIGURE 3. Major strain comparisonMinor StrainFIGURE 4. Minor strain comparisonMASS PRODUCTION APPLICATIONS AND CHALLEN

32、GES (2000s)In todays die and stamping industry, the stamping CAE for digital validations of die developments before production trials is a critical business for lead-time reduction,cost reduction and quality improvements.The industry and CAE engineers push the technology envelop limit and attempt to apply the simulations to almost all possible areas of sheet metal forming to maximize the power of simulation and its financial benefits. In the automotive stamping are summarized as following. Increasing part size and shape complexity such as whole body side panels, and multiple attac

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1