1、人教版部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二含答案 13人教版_部编版八年级数学上册第十二章第二节三角形全等的判定考试复习题二(含答案)如图是用直尺和圆规作一个角等于已知角的方法,它是由判定三角形全等的结论得到的,判定全等的依据是( )A B C D【答案】D【解析】【分析】从作图可知OD=OD=OC=OC,CD=CD,根据SSS证ODCODC即可【详解】解:从作图可知OD=OD=OC=OC,CD=CD,在ODC和ODC中,ODCODC(SSS),AOB=AOB(全等三角形的对应角相等),故选择:D【点睛】本题考查了全等三角形的性质和判定和有关角的作法,主要考查学生的观
2、察能力和推理能力,全等三角形的判定定理有SAS,ASA,AAS,SSS22如图,已知,补充下列一个条件不一定能证明,这个条件是( )A平分 B平分C D【答案】B【解析】【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,HL,根据全等三角形的判定定理逐个进行判断即可【详解】解:根据题意,AC为公共边,A、平分,则DAC=BAC,满足SAS,可以证明;B、平分,则DCA=BCA,满足SSA,不可以证明;C、,满足SSS,可以证明;D、,满足HL,可以证明;故选择:B.【点睛】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,HL23如图
3、所示,在ABC中,ADBC于点D,BEAC于点E,AD、BE交于点H,且HD=DC,那么下列结论中正确的是( )AAH=EC BAE=EC CADCBEC DADCBDH【答案】D【解析】【分析】首先根据垂直可得ADB=ADC=90,然后再证明HAE=HBD,然后再利用AAS证明ADCBDH【详解】ADBC于D,ADB=ADC=90,DAE+AHE=90,BEAC,HBD+BHD=90,AHE=BHD,HAE=HBD,在ADC和BDH中,ADCBDH(AAS),故选:D【点睛】此题考查全等三角形的判定,解题关键是掌握全等三角形的判定定理:SSS、SAS、ASA、AAS、HL24根据下列已知条件
4、,能画出唯一ABC的是( )AAB=3,BC=4,AC=8 BA=100,B=45,AB=5CAB=3,BC=5,A=75 DC=90,A=30,B=60【答案】B【解析】【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可【详解】解:A、3+48,不符合三角形三边关系定理,不能画出三角形,故本选项错误;B、根据A=100,B=45,AB=5能画出唯一ABC,故此选项正确; C、AB=3,BC=5,A=75,不能画出唯一三角形,故本选项错误D、C=90,A=30,B=60,不能画出唯一三角形,故本选项错误;故选:B【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握
5、全等三角形的判定方法是解题关键二、解答题25已知:如图,在ABC中,BC=AC,在CDE中,CE=CD,现把两个三角形的C点重合,且使BCA=ECD,连接BE、AD(1)求证:BE=AD(2)若将ECD绕点C旋转至图、所示的情况时,其余条件不变,BE与AD还相等么?若相等,请给与证明;若不相等,请说明理由.【答案】(1)见解析;(2)BE与AD相等,理由见解析.【解析】【分析】(1)由BCA=ECD可推出BCE=ACD,然后利用SAS即可证明BCEACD,从而得到BE=AD;(2)图可直接利用SAS即可证明BCEACD,从而得到BE=AD;图先由BCA=ECD推出BCE=ACD,然后利用SAS
6、即可证明BCEACD,从而得到BE=AD.【详解】证明:(1)BCA=ECDBCAECA=ECDECA即BCE=ACD在BCE和ACD中,BCEACD(SAS)BE=AD(2)BE与AD相等,理由如下:如图,在BCE和ACD中,BCEACD(SAS)BE=AD如图,BCA=ECDBCA+ACE=ECD+ACE即BCE=ACD,在BCE和ACD中,BCEACD(SAS)BE=AD【点睛】本题考查全等三角形的判定和性质,掌握旋转模型的特点,找出全等三角形的判定条件是解题的关键.26如图,已知在ABC中,AB=AC,D、A、E三点都在直线m上,并且有BDA=AEC=BAC=90.求证:ADBCEA求
7、证:DE=BD+CE.【答案】见解析;见解析.【解析】【分析】由同角的余角相等可得B=CAE,然后利用AAS即可判定全等;根据全等三角形对应边相等得到BD=AE,AD=CE,然后利用等量代换即可得证.【详解】证明:BDA=AEC=BAC=90BAD+B=90,BAD+CAE=90B=CAE在ADB和CEA中,ADBCEA(AAS)ADBCEABD=AE,AD=CEDE= AE+AD=BD+CE【点睛】本题考查全等三角形的判定和性质,此模型属于“一线三等角”模型中的三垂直模型,熟记此模型的证明方法是关键.27如图,ABC中,D为BC中点,BFCE.求证:BF=CE【答案】见解析.【解析】【分析】
8、由平行可得内错角相等,再由对顶角相等,以及BD=CD,即可判定ADFCDE,从而证明BF=CE.【详解】证明:BFCEF=CEDD为BC的中点BD=CD在ADF和CDE中,ADFCDE(AAS)BF=CE【点睛】本题考查全等三角形的判定和性质,证明线段相等,可证明线段所在的三角形全等,找到全等条件是关键.28如图,在ABC中,BC,AB10cm,BC8cm,E为AB的中点,点P在线段BC上以3cm/s的速度由点B向点C运动;同时,点Q在线段CA上由点C向点A运动,当点Q的速度为多少时,能够使BPE和CQP全等?【答案】3cm/s或cm/s【解析】【分析】根据等腰三角形的性质得到BC,设点P、Q
9、的运动时间为t,则BP3t,根据线段中点的定义得到BE105cm,PC(83t)cm,当BE,PC是对应边时,当BD与CQ是对应边时根据全等三角形的性质列方程即可得到结论【详解】ABAC,BC, 设点P、Q的运动时间为t,则BP3t,AB10cm,BC8cm,E为AB的中点,BE105cm,PC(83t)cm,当BE,PC是对应边时,BPE和CQP全等,BEPC,BPCQ,583t,解得:t1,点Q的速度为3cm/s;当BD与CQ是对应边时,BPE和CQP全等,BDCQ,BPPC,3t83t,解得:t,点Q的速度为,综上所述,当点Q的速度为3 cm/s或cm/s时,能够使BPE和CQP全等【点
10、睛】本题考查了全等三角形的判定定理,等腰三角形的性质,熟练掌握全等三角形的判定定理是解题的关键29如图,在ABC中,已知12,BECD(1)求证:ABEACD;(2)求证:BFC是等腰三角形。【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据AAS证明ABEACD即可;(2)利用ABEACD得出AB=AC,进而利用等腰三角形的判定解答即可【详解】(1)在ABE与ACD中, ,ABEACD(AAS);(2)ABEACD,AB=AC,ABC为等腰三角形,12,ABC-1ACB-2,FBC=FCB,所以BFC是等腰三角形【点睛】此题考查了全等三角形的判定,熟练应用全等三角形的判定
11、方法是解题关键30如图,ABC中,AB=AC,BAC=90,D是BC的中点,E、F分别是AB、AC上的点,且AE=CF,求证:DEDF.【答案】见解析.【解析】【分析】利用等腰直角三角形的性质得出AD=BD=DC,进而证明AEDCFD,利用全等三角形的性质得出ADE=CDF进而得出DEDF.【详解】解:如图, BAC=90,AB=AC,D为BC中点,BAD=DAC=B=C=45,AD=BD=DC,在AED和CFD中,AEDCFD(SAS),ADE=CDF,又CDF+ADF=90,ADE+ADF=90,EDF=90,DEDF【点睛】此题主要考查了全等三角形的判定与性质以及等腰直角三角形的性质,根据已知得出AD=BD=DC是解题关键
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1