ImageVerifierCode 换一换
格式:DOCX , 页数:14 ,大小:41.34KB ,
资源ID:4098198      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4098198.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(7新人教版七年级数学上册全部教案第三单元.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

7新人教版七年级数学上册全部教案第三单元.docx

1、7新人教版七年级数学上册全部教案第三单元海林市旧街中学数学组 课题: 2.1.1一元一次方程(1) 1、 通过处理实际问题,让学生体验从算术方法到代数方法是一种进步; 2、 初步学会如何寻找问题中的相等关学习目标 系,列出方程,了解方程的概念; 3、 培养学生获取信息,问题设计,处理问题的能力。 教学难点 均是从实际问题中寻找相等关系。 知识重点 设计理念 教学过程(师生活动) 用多媒体演示的甲乙两辆客车同时从A地出发,目的是使学生能直观地理解“匀向相同的方向行驶,已知甲车的速度速”的含义,为后面寻相等关系是70km/h,乙车的速度是60km/h,做准备。 培养学生读图的甲车比乙车早1个小时经

2、过途中的B能力和思维的广情境引阔性。 地。你能求出A、B两地的路吗? 入 这样既可以复习小学的算术方1、你知道问题涉及的三个基本数法,又为后面与方程的比较打下量及其关系吗? 伏笔。 2、题中已知的数量有哪些?哪些提出问题:引出新课 - 1 - 海林市旧街中学数学组 数量是不知道的? 3、你能用一个字母来代表这个不知道的数量吗?用哪个字母? 4、在这个字母的帮助下,你能表示出甲乙两车从A地到B所用的时间吗?这两个时间有什么关系?你能用算式把这种关系表示出来吗? 5、观察你列出的算式,阅读教材,回答:你列出的算式叫什么?其中什么是元?元是什么意思? 渗透列方程解决一、师生共同:给出方程的概念,介实

3、际问题的思考程序。 绍等式、等式的左边、等式的右边等理解题意是寻找相等的关系的前概念 提。 二、归纳列方程解决实际问题的两个 考虑到学生寻找学习新步骤: 关系的难度,教师在此处有意加知 (1)用字母表示问题中的未知数以引导。 (通常用x,y,z等字母); (2)根据问题中的相等关系,列出教师要根据课堂教学的情况灵活方程 处理,不能把学生的思维硬往教材上套。 - 2 - 海林市旧街中学数学组 你能用算数法解决这个问题吗? 1、比较列算式和列方程两种方法的特点建议用小组讨论的方式进行,可以把学生分成两部分分别归纳两通过比较能使学种方法的优缺点,也可以每个小组同生学会到从算式时讨论两种方法的优缺点,

4、然后向全到方程是数学的班汇报 进步。 列算式:只用已知数,表示计举一反 算程序,依据是间题中的数量关系; 问题的开放性有 列方程:可用未知数,表示相三讨论利于培养学生思维的发散性。 等关系,依据是问题中的等量关系。 交流 2、思考:对于上面的问题,你还能 这样安排的目列出其他方程吗?如果能,你依据的的是所有的学生都有独立思考的是哪个相等关系?、 时间和合作交流 建议按以下的顺序进行:! 的时间。 (1)学生独立思考; (2)小组合作交流; (3)全班交流 1、例题(补充):根据下列条件,列出关于x的方程: (1)x与18的和等于54; (2)27与x的差的一半等于x的4倍 初步应 建议:本例题

5、可以先让学生尝补充例题(练习)的目的一方用 试解答,然后教师点评 面是增加列式的 解:(1)x18=54; 机会,另一方面课堂练介绍列代数式的1 (2)(27x)4x. 有关知识。 2习 列出方程后教师说明:“4x表示4与x的积,当乘数中有字母时,通常省略乘号“X”,并把数字乘数写在字母乘数的前面 2、练习(补充): - 3 - 海林市旧街中学数学组 (1) 列式表示: 比a小9的数; x的2倍与3的和; 5与y的差的一半; a与b的7倍的和 (2)根据下列条件,列出关于x的方程: (1) 12与x的差等于x的2倍; (2)x的三分之一与5的和等于6. 小结与作业 可以采用师生问答的方式或先让

6、学归纳,补充,然后教师补充的方式进行,主要围绕以下问题: 课堂小1、 本节课我们学了什么知识? 结 2、 你有什么收获? 说明方程解决许多实际问题的工具。 1、 必做题:阅读教科书上70页的阅读与思考;第73页习题2.1第1,5题。 本课作2、 选做题:根据下列条件,用式 业 表示问题的结果: (1) 一打铅笔有12支,m打铅笔有多少支? (2) 某班有a名学生,要求平均 - 4 - 海林市旧街中学数学组 每人展出4枚邮票,实际展出的邮标量比要求数多了15枚,问该班共展出多少枚邮票? (3) 根据下列条件列出方程:小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入。 课

7、后记(与反思)(课堂设计理念,实际教学效果及改进设想) 本教学设计着力体现以下几方面特点: 1、突出问题的应用意识教师首先用一个学生感兴趣的实际问题引人课题,然后运用算术的方法给出解答。在各环节的安排上都设计成一个个的问题,使学生能围绕问题展开思考、讨论,进行学习 2、体现学生的主体意识本设计中,教师始终把学生放在主体的地位:让学生通过对列算式与列方程的比较,分别归纳出它们的特点,从而感受到从算术方法到代数方法是数学的进步;让学生通过合作与交流,得出问题的不同解答方法;让学生对一节课的学习内容、方法、注意点等进行归纳 3、体现学生思维的层次性教师首先引导学生尝试用算术方法解决间题,然后再逐步

8、引导学生列出含未知数的式子,寻找相等关系列出方程在寻找相等关系、设未知数及作业的布置等环节中,教师都注意了学生思维的层次性 4、渗透建模的思想把实际间题中的数量关系用方程形式表示出来,就是建立一种数 学模型,教师有意识地按设未知数、列方程等步骤组织学生学习,就是培养学生由实际问题抽象出方程模型的能力 课题:2.1.1 一元一次方程(2) - 5 - 海林市旧街中学数学组 理解一元一次方程、方程的解等概念; 掌握检验某个值是不是方程的解的方法; 培养学生根据间题寻找相等关系、根据相学习目标 等关系列出方程的能力; 体验用估算方法寻求方程的解的过程,培养学生求实的态度。 教学重点 重点是寻找相等关

9、系、列出方程 对于复杂一点的方程,用估算的方法寻求方教学难点 程的解,需要多次的尝试,也需要一定的估计能力 教学过程(师生活动) 设计理念 问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁? 如果设小雨的年龄为x岁,你能用学生身边的实际问题作为引用不同的方法表示小思的年龄吗? 入,能有效地激 情境引发学生的参与欲在学生回答的基础上,教师加以望用不同的方入 法表示同一个引导:小思的年龄可以用两个不同的量,可以自然地列出方程 式子25-x和2x-8来表示,这说明许多实际问题中的数量关系可以用含字母的式子来表示 由于这两个不同的式子表示的是同 - 6 - 海

10、林市旧街中学数学组 一个量,因此我们又 可以写成:25-x=2x-8这样就得到了一个方程 尝试: 让学生尝试解答教科书第67页本环节采用“尝的例1。对于基础比 试一交流一讲评一讨论”四个 较差的学生,教师可以作如下提示: 步骤。 这几个问题(1)选择一个未知数,设为x, 的提示教师可根据学生的基础灵(2)对于这三个问题,分别考虑: 活处理 用含x的式子表示这台计算机“解释式子的含义”有必要,它的检修时间; 可以培养学生的自查的习惯。 用含x的式子分别表示长方形强调的目的在于自主尝抓住列方程的关的长和宽; 键。 试 用含x的式子分别表示男生和 讨论的目的在于女生的人数 突出重点,突破难点,同时培

11、养(3)找一个问题中的相等关系列学生的灵活性,也为后面的“移出方程 项”打下伏笔。 交流: 在学生基本完成解答的基础上, 请几名学生汇报所列的方程,并解释 方程等号左右两边式子的含义 教师在学生回答的基础上作补充 - 7 - 海林市旧街中学数学组 讲解,并强调: (1)方程等号两边表示的是同一个量; (2)左右两边表示的方法不同 简单地说:列方程就是用两种不同的方法表示同一个量以第(1)题为例:方程左边的式子1 700150x”表示计算机已使用的时间加上后来可使用的时间,也就是规定的检修时间右边的2 450”也是规定检修的时间这样就有“1 700十150x =2 450. 讨论: 问题1:在第

12、(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗? 让学生在学习小组内讨论,然后分组汇报交流: 选“已使用的时间”可列方程: 2 450-150x=1 700. 选“还可使用的时间”可列方程: 150x=2 450-1 700. - 8 - 海林市旧街中学数学组 问题2:在第(3)题中,你还能设其他的未知数为x吗? 在学生独立思考、小组讨论的基础上交流: 设这个学校的男生数为x,那么女生数为(x+80),全校的学生数为 (x+x+80). 列方程:x80=52(x+x80) 概念的建立 让学生在观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的指数都是1,

13、这样的方程叫做一元一次方程 “一元”:一个未知数;“一次”:概念的建立要经历由感性到理性未知数的指数是一次 的过程,“判断”的目的就是为了判断下列方程是不是一元一次建立概对概念进一步理方程: 解。 念 (1)23-x=一7: (2)2a-b=3 学生参与,渗透 (3 )y+36y-9; (4)0.32 m-(3建立数学模型的 思想。0.02 m) =0.7. 112(5)x1 (6) y 4 y23引导学生归纳: 从上面的分析过程我们可以发现,用方程的方法来解决实际问题, - 9 - 海林市旧街中学数学组 一般要经历哪几个步骤?在学生回答的基础上,教师用方框表示: 设未知数 列方程 实际问题

14、一元一次方程 分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法 列出方程后,还必须解这个方程,求出未知数的值对于简单的方程,我们可以采用估算的方法 问题:你认为该怎样进行估算? 可以采用“尝试发现归纳” 的方法:让学生尝试后发现,要求出 答案必须用一些具体的数值代入,看 估算求方程是否成立,最后教师进行归纳 可以像教科书那样用列表的方法 解 进行尝试,也可以像下面的示意图那估算是一种重要样按程序进行尝试 的方法,应引起 在此基础上给出概念:能使方重视。程左右两边的值相等的未知数的值,叫做方程的解求方程的解的过程,叫做解方程 一般地,要检验某个值是不是方程的解

15、,可以用这个值代替未知数代 - 10 - 海林市旧街中学数学组 人方程,看方程左右两边的值是否相等 练习教科书第69页中练习 课堂练 习 小结与作业 着重引导学生从以下几个方面进行归纳: 这节课我们学习了什么内容? 用列方程的方法解决实际问对于较复杂的方题的一般思路是什么? 程,用估算的办课堂小法一时很难求出列方程的实质就是用两种不方程的解,只须结 同的方法来表示同一个量 让学生有所体验估算是一种重要的方法 即可。 思考:教科书第69页中的“思考”(不一定让学生估算出方程的解,目的是体验用估算的方法有时会很麻烦) 必做题:教科书第73页习题2.1第2,6,7,8题 选做题:教科书第74页习题2

16、.1本课作第11题 业 备选题: (1)x=3是下列哪个方程的解?( ) - 11 - 海林市旧街中学数学组 A. 3x-1-9=0 B. x=10-4x C. x(x-2)3 D. 2x-712 x(2)方程的解是( ) 621 A. 3.B C. 12 D. 12 3(3)已知x5与2x4的值互为相反数,列出关于x的方程 (4)某班开展为贫困山区学校捐书活动,捐的书比平均每人捐3本多21本,比平均每人捐4本少27本,求这个班,有多少名学生?如果设这个班有x名学生,请列出关于 x的方程 课后记(与反思)(课堂设计理念,实际教学效果及改进设想) 学生要学习的数学知识,是经过前人的筛选和整理了的

17、,但对于他们来说仍是全新的、未知的这就需要教师通过对学习内容的重新设计,启发学生去思考,引导学生去探究,使学生在一定的条件下,经过自身的学习活动,把新的知识纳人原有的认知结构,进行重组、整合,构建新的认知结构这就是建构主义的教学观本教学设计在这方面力求得到体现另外还体现了以下几个特点: 符合学生的认知规律本设计以学生身边的数学问题引人,然后采用先尝试的方法学习例1的内容对于概念的建立采用从具体到抽象、从理论到实践的过程,对于方法的探索采用从特殊到一般的思想、 体现了自主学习、合作交流的新课程理念对于例题的处理,改变了传统的教学模式,采用了“尝试交流讲评讨论”的方式,充分发挥学生的主体性、参与性

18、对于用估算的方法求方程的解时,同样采用了“尝试发现归纳”的方式 重视算法算理的渗透也是新课程的一个特点本设计一开始就让学生用两种不同的方式来表示同一个量,在一步一步的学习中,逐步体现“列方程就是用两种不同的方式来表示同一个量”的观点在用估算的方法求方程的解时,体现了用具体的数值代入检验的方法 课题:2.1.2 等式的性质(1) - 12 - 海林市旧街中学数学组 了解等式的两条性质; 会用等式的性质解简单的(用等式的一条性质)一元一次方程; 学习目标 培养学生观察、分析、概括及逻辑思维能力; 渗透“化归”的思想 教学重点 理解和应用等式的性质 应用等式的性质把简单的一元一次方程化成知识难点 “

19、x=a”. 演示实验用的一架天平、砝码(估计与乒教学准备 乓球等质量的取3只)、小木块等 设计理念 教学过程(师生活动) 用估算的方法我们可以求出简单的一元一次方程的解你能用这种方法求出下列方程的解吗? 第(1)题是为了(1) 3x-522; (2) 复习,第(2)题提出问是估算比较困0.28-0.13y=0.27y1. 难,以引起学生题 认知冲突,引出第(1)题要求学生给出解答,第新课 (2)题较复杂,估算比较困难,此时教师提出:我们必须学习解一元一次方程的其他方法 用实验演示,能探究新实验演示: 比较直观地归纳 - 13 - 海林市旧街中学数学组 出等式的性质 知 教师先提出实验的要求:请

20、同学们 仔细观察实验的过程,思考能否从中 发现规律,再用自己的语言叙述你发 现的规律然后按教科书第71页图 2.1-2的方法演示 实验 教师可以进行两次不同物体的实 验 归纳: 两种形式的表示 请几名学生回答前面的问题 方法应该让学生理解 在学生叙述发现的规律后,教师进一 先观察后实验的步引导:等式就像平衡的天平,它具目的 一是培养学生的看图能有与上面的事实同样的性质比如力,二是培养学生读数学书的能“8=8”,我们在两边都加上6,就有力 “86=86”;两边都减去11,就举例的目的在于得到初步的应用 有“811=811”. 表示: 问题1:你能用文字来叙述等式的这个性质吗? 在学生回答的基础上

21、,教师必须说明:等式两边加上的可以是同一个数,也可以是同一个式子 - 14 - 海林市旧街中学数学组 问题2:等式一般可以用a=b来表示等式的性质1怎样用式子的形式来表示? 如果a=b,那么ac=bc 字母a、b、c可以表示具体的数,也可以表示一个式子。 观察教科书第71页图2.13,你又能发现什么规律?你能用实验加以验证吗? 在学生观察图2.1一3时,必须注意图上两个方向的箭头所表示的含义观察后再请一名学生用实验验证 然后让学生用两种语言表示等式的性质2. 如果a=b,那么ac=bc ab cc 如果a=b(c0),那么 - 15 - 海林市旧街中学数学组 问题3:你能再举几个运用等式性质的

22、例子吗? 如:用5元钱可以买一支钢笔,用2元钱可以买一本笔记本,那么用7元钱就可以买一支钢笔和一本笔记本,15元钱就可以买3支钢笔相当于: “5元一买1支钢笔的钱;2元一买1本笔记本的钱 5元2元=买1支钢笔的钱买1本笔记本的钱 35元=3买1支钢笔的钱” 例题一方面要做方程是含有未知数的等式,我们好示范,另一方面要充分发挥学可以运用等式的性质来解方程。 生的主体性 例1教科书第72页例2中的第 (1)、(2)题 小结实际上是解分析:所谓“解方程”,就是要题后的一种反思 因此我们需求出方程的解“x=?应用举 要把方程转化为“x=a(a为常数)” 例 形式。 问题 1:怎样才能把方程x 7=26

23、转化为x=a的形式? 学生回答,教师板书: 补充这个例题,解:(1)两边减7,得、 能使学生及时应x+7用所学的知识解7=267, 决实际问题 - 16 - 海林市旧街中学数学组 x=19. I 问题2:式子“5x”表示什么?我们把其中的5叫做这个式子的系数你能运用等式的性质把方程5x=20转化为x=a的形式吗? 用同样的方法给出方程的解 小结:请你归纳一下解一元一次方程的依据和结果的形式 例2(补充)小涵的妈妈从商店买回一条裤子,小涵问妈妈:“这条裤子需要多少钱?”妈妈说:“按标价的八折是36元”你知道标价是多少元吗? 要求学生尝试用列方程的方法进行解答在学生基本完成的情况下,教师给出示范

24、解:设标价是x元,则售价就是80x元,根据售价是36元 可列方程: 80%x=36, 两边同除以80,得 x=45. 答:这条裤子的标价是45元 分别说出下列各式子的系数 313x,7m,a,x, y n52利用等式的性质解下列方程 课堂练这方面的练习 (1) x5=6 (2)0.3x=45 有体现就够了,习 以免冲淡解方程 1(3)y=0.6 (4) y 23七年级3班有18名男生,占全班人数的45%,求七年级3班的学生人 - 17 - 海林市旧街中学数学组 数。 小结与作业 让学生进行小结,主要从以下几个方面去归纳: 等式的性质有那几条?用字母怎样表示?字母代表什么? 课内小结是不可解方程

25、的依据是什么?最终或缺的一环,它可以起到提炼、课堂小必须化为什么形式? 整理、把知识纳入学生的认知体结 在字母与数字的乘积中,数字系思考题不作统一要求,这将因数又叫做这个式子的系数 在下一课中学习 思考:你能用等式的性质解本课引入时的方程 3x5=22吗?(第2个方程在学了后续的知识后再解答) 必做题 (1)利用等式的性质解下列方程: a25=95 x12=本课作4 2 0.3x=12 业 x 33(2)教科书第74页第9题 选作题: 一件电器,按标价的七五折出售是 - 18 - 海林市旧街中学数学组 213元,问这件电器的标价是多少元? 课后记(与反思)(课堂设计理念,实际教学效果及改进设想

26、) 本节课从提出间题,引起学生的认知冲突引出学习的必要性在每个环节的安排 中,突出了问题的设计,教师通过一个个的问题,把学生的思维激发起来,从而使学生主动、有效地参与到学习中来 重视学生多元智能的开发教师对教科书上的两幅图采取了两种不同的处理方法 既有直观的实验演示,又有学生的图形观察;既要求学生从实验中归纳结论,又要求学生理解图形用实验验证对发现的结论用自己的语言、文字语言、字母表达式表示出来让 学生充分地进行实验、观察、归纳、表达、应用 突出对等式性质的理解和应用实验演示、观察图形、语言叙述、字母表示、初步应用等都是为了使学生能理解性质,在解方程的过程中,要求学生说明每一步变形的依据,解题

27、后及时地进行小练所有这些都围绕本节课的重点,也为后续的学习打下基础 课题:2.1.2 等式的性质(2) 进一步理解用等式的性质解简简单的(两次运用等式的性质)一元一次方程 学习目标 初步具有解方程中的化归意识; 培养言必有据的思维能力和良好的思维品质 教学重点 用等式的性质解方程。 需要两次运用等式的性质,并且有一定的思知识难点 维顺序。 - 19 - 海林市旧街中学数学组 设计理教学过程(师生活动) 念 解下列方程:(1)x7=1.2; (2)23 x 32在学生解答后的讲评中围绕两个问由于这一课时题: 也是学习用等复习引式的性质解方 每一步的依据分别是什么? 程,所以通过入 复习来引入比

28、求方程的解就是把方程化成什么形较自然。 式? 这节课继续学习用等式的性质解一元一次方程。 对于简单的方程,我们通过观察就不同层次的学生经过尝试就能选择用等式的哪一条性质来解,下会有不同的收列方程你也能马上做出选择吗? 获:一部分学例1 利用等式的性质解方程: 生能独立解决,一部分学1()0.5xx=3.4 (2) x 5 4生虽不能解3答,但经过老先让学生对第(1)题进行尝试,然后师的引导后,教师进行引导: 也能受到启探究新 要把方程0.5xx=3.4转化为x=a发,这比纯粹的老师讲解更的形式,必须去掉方程左边的0.5,知 能激发学生的怎么去? 积级性。 要把方程x=2.9转化为x=a的形 式

29、,必须去掉x前面的“”号, 怎么去? 然后给出解答: 解:两边减0.5,得0.5x0.5=3.4 0.5 - 20 - 海林市旧街中学数学组 化简,得 这里补充一个 x=例题的目的一29,、 是解方程的应 两边同乘1,得l 用,二是前两节课中已学到x=了方程,在这 2.9 里可以进一步 小结:(1)这个方程的解答中应用,三是使后面的“检验”两次运用了等式的性质(2)解方程更加自然。 的目标是把方程最终化为x=a的形 式,在运用性质进行变形时,始终 要朝着这个目标去转化 解题的格式现 你能用这种方法解第(2)题在不一定要学吗? 生严格掌握。 在学生解答后再点评 解后反思: 第(2)题能否先在方程

30、的两边同乘“一3”? 比较这两种方法,你认为哪一种方法更好?为什么? 允许学生在讨论后再回答 例2(补充)服装厂用355米布做成人服装和儿童服装,成人服装每套平均用布35米,儿童服装每套平均用布15米现已做了80套成人服装,用余下的布还可以做几套儿童服装? 在学生弄清题意后,教师再作分析:如果设余下的布可以做x套儿童服装,那么这x套服装就需要布1.5x米,根据题意,你能列出方程吗? 解:设余下的布可以做x套儿童服装,那么这x套服装就需要布 - 21 - 海林市旧街中学数学组 1.5米,根据题意,得 80x3.51.5x355 化简,得 2801.5x355, 两边减280,得 2801.5x2

31、80355280, 化简,得 1.5x75, 两边同除以1.5,得x50 答:用余下的布还可以做50套儿童服装 解后反思:对于许多实际间题,我们可以通过设未知数,列方程,解方程,以求出问题的解也就是把实际问题转化为数学问题 问题:我们如何才能判别求出的答案50是否正确? 在学生代入验算后,教师引导学生归纳出方法:检验一个数值是不是某个方程的解,可以把这个数值代入方程,看方程左右两边是否相等,例如:把x=50代入方程803.51.5x=355的左边,得803.51.550=28075=355 方程的左右两边相等,所以x=50是方程的解。 你能检验一下x=27是不是方程1的解吗? x 5 43 教

32、科书第73页练习 第(3)(4)课堂练题。 习 小聪带了18元钱到文具店买 - 22 - 海林市旧街中学数学组 学习用品,他买了5支单价为1.2元的圆珠笔,剩下的钱刚好可以买8本笔记本,问笔记本的单价是多少?(用列方程的方法求解) 建议:采用小组竞赛的方法进行评议 小结与作业 建议:先让学生进行归纳、补充。引发竞争意主要围绕以下几个方面: 识,提高自我评价和自我表(1) 这节课学习的内容。 现的机会,以达到激发兴课堂小(2) 我有哪些收获? 趣,巩固知识的目的。评价结 (3) 我应该注意什么问题? 包括对学生个人、小组,对教师对学生的学习情况进行评价。 学生的学习态度、情感投入思考题 用等式的性质求x:2x=及学习的

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1