ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:30.06KB ,
资源ID:4029720      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/4029720.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(外文翻译机械结构的可靠性优化设计.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

外文翻译机械结构的可靠性优化设计.docx

1、外文翻译机械结构的可靠性优化设计外文翻译-机械结构的可靠性优化设计英文原文 Optimize the reliability of mechanical structure design It is now generally recognized that structural and mechanical problems are nondeterministic and, consequently, engineering optimum design must cope with un-certainties,Reliability technology provides tools

2、for formal assessment and analysis of such uncertainties,Thus, the combination of reliability-based design procedure sand optimization promises to provide a practical optimum design solution, i,e,, a de-sign having an optimum balance between cost and risk, However, reliabilty-based structural optimi

3、zation programs have not enjoyed the name popularity as their deterministic counterparts, Some reasons for this are suggested, First, reliability analysis can be complicated even for simple systems, There are various methods for handling the uncertainty in similar situations (e,g,, first order secon

4、d moment methods, full distribution methods), Lacking a single method, individuals are likely to adopt separate strategies for handling the uncertainty in their particular problems, This suggests the possibility of different reliability predictions in similar structural design situations, Then, ther

5、e are diverging opinions on many basic issues, from the very definition of reliability-based optimization, including the definition of the optimum solution, the objective function and the constraints, to its application in structural design practice, There is a need to formally consider these itess

6、in the merger of present structural optimization research with reliability-based design philosophy。 In general, an optimization problem can be stated as follows,Minimize subject to the constraints where X is an-dimensional vector called the design vector, f(X) is called the objective function and, k

7、(X) and i(X) are, respectively, the inequality and equality constraints, The number of variables n and the number of constraints, L need not be related in any way, Thus, L could be less than, equal to or greater than n in a given mathematical programming problem, In some problems, the value of L mig

8、ht be zero which means there are no constraints on the problem, Such type of problems are called unconstrained optimization problems, Those problems for which L is not equal to zero are known as constrained optimization problems。 Traditionally the designer assumes the loading on an element and the s

9、trength of that element to be a single valued characteristic or design value, Perhaps it is equal to some maximum (or minimum) anticipated or nominal value, Safety is assured by introducing a factor of safety, greater than one, usually applied as a reduction factor to strength。 Probabilistic design

10、is propose: as an alternative to the conventional approach with the promise of producing better engineered systems, each factor in the design process can be defined and treated as a random variable, Using method-ology from probabilistic theory, the designer defines the appropriate limit state and co

11、mputes the probability of failure P of the element, The basic design requirement is that,where p f is the maximum allowable probability of failure。 Advantages of adopting the probabilistic design approach are well documented (Wu, 1984), Basically the arguments for probabilistic design center around

12、the fact that, relative to the conventional approach, a) risk is a more meaningful index of structural performance, and b) a reliability approach to design of a sys-tom can tend to produce an optimum design by ensuring a uniform risk in all components。 Optimization, which may be considered a compone

13、nt of operations research, is the process of obtaining the best result by finding conditions that produce the maximum or minimum value of a function, Table 1,1 illustrates area of operations research。 Mathematical programming techniques, also known as optimization methods, are useful in finding the

14、minimum (or maximum) of a function of several variables under a prescribed set of constraints, Rao (1979) presented a definition and description of some of the various methods of mathematical programming, Stochas-tic process techniques can be used to analyze problems which are described by a set of

15、random variables, Statistical methods enable one to analyze the experimental data and build empirical models to obtain the most accurate representations of physical behavior。 Origins of optimization theory can be traced to the days of Newton, La-grange and Cauchy in the 1800x, The application of dif

16、ferential calculus to optimization was possible because of the contributions of Newton and Leibnitz, The foundations of calculus of variations were laid by Bernoulli, Euler, Lagrange and Weirstrass, The method of optimization for constrained problems, which involves the addition of unknown multiplie

17、rs became known by the name its inventor, La-grange, Cauchy presented the first application of the steepest descent method to solve minimization problems。 In spite of these early contributions, very little progress was made until the middle of the twentieth Gentry, when high-speed digital computers

18、made the implementation of optimization procedures possible and stimulate, d further research on new methods, Spectacular advances followed, producing a m;sssive literature on optimization techniques, This advancement also resulted in the emergence of several well-defined new areas in optimization t

19、heory。 It is interesting to note that major developments in the area of numerical methods of unconstrained optimization have been made in the TTnited Kingdom only in the 1960x, The development of the simplex method by Dantzig (1947) for linear programming and the annunciation of the principle of opt

20、imality by Bellman (195?) for dynamic programming problems paved the wa,; f= development of the methods of constrained optimization, The work by Kuhn and Tucker (1951) on necessary and xuflicient conditions for the optimal xolution of programming problems laid foundations for later research in nonli

21、near programming, the optimization area of this thesis。 Although no single technique has been found to be universally applicable for nonlinear programming, the works by Cacrol (1961)and Fiacco and McCormic (1968) suggested practical solutions by employing well-known techniques of uncon xtrained opti

22、mization, Geometric programming was developed by Dufhn, Zener and Peterson (1960), Gomory (1963) pioneered work in integer programming, which is at this time an exciting and rapidly developing area of optimization research, Many real-world applications can be cast in this category of problem, Dantzi

23、g (1955) and Charnel and Cooper (1959) developed stochastic programming techniques and solved problems by assuming design parameters to be independent and normally distributed。 Techniques of nonlinear programming, employed in this study, can be categorized 1, one-dimensional minimization method 2, u

24、nconstrained multivariable minimization A, gradient based method B, nongradient based method 3, constrained multivariable minimization A, gradient based method B,gradient based method The gradient based methods require function and derivative evaluations while the non gradient based methods require

25、function evaluations only, In general, one would expect the gradient methods to be more effecti;re, due to the added information provided, However, if analytical derivatives are available, the question of whether a search technique should be used at all is presented, If numerical derivative approxim

26、ations are utilized, the efficiency of the gradient based methods should be approximately the same as that of nongradient based methods, Gradient based methods incorporating numerical derivatives would be expected to present some numerical problems in the vicinity of the optimum, i,e,, approximation

27、s to slopes would become small, Fig, 1,1 shows the $ow chart of general iterative scheme of optimization (Rao, 1979), No claim is made that some methods are better than any others, A method works well on one problem may perform very poorly on another problem of the same general type, Only after much

28、 experience using all the methods can one judge which method would be better for a particular problem (Kuester snd Mize, 1973). First attempts to apply probabilistic and statistical concepts in structural analysis date back to the beginning of this century, However, the subject aid not receive much

29、attention until after the World War II, In October 1945, a historic paper written by A, M, Freudenthal entitled The Safety of Structures appeared in the proceedings of the American Society of Civil Engineers, The publication of this paper marked the genesis of structural reliability in the U,S,A, Pr

30、ofessor F:eudenthal continued for many years to be in the forefront of structural reliability and risk analysis, During the 1960s there was rapid growth of academic interest in struc-total reliability theory, Classical theory became well developed and widely known through a few influential publicati

31、ons such as that of Freudenthal, Garrelts, and Shi-nouzuka (1966), Pugsley (1966), Kececioglu and Cormier (1964), Ferry-Borges and Castenheta (1971, and Haugen (1968), However, professional acceptance was low for several reasons, Probabilistic design seemed cumbersome, the theory, particularly syste

32、m analysis, seemed mathematically intractible, Little data were available, and modeling error was an issue which needed to be addressed, But there were early efforts to circumvent these limitations, Turkstra(l070) Yrnted structural design as a problem of decision making under uncertainty and risk, Lind, Turkstra, and Wright (1965) defined the problem of rational design of a code as finding a set of best values of the load and resistance factors, Cornell (1967) suggested the use of a second moment format, and subsequently it

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1