1、经典低应变反射波法的基本原理只是分享 一、低应变反射波法的基本原理 低应变反射波法是以一维弹性杆平面应力波波动理论为基础的。将桩身假定为一维弹性杆件(桩长直径),在桩顶锤击力作用下,产生一压缩波,沿桩身向下传播,当桩身存在明显的波阻抗Z变化界面时,将产生反射和透射波,反射的相位和幅值大小由波阻抗Z变化决定。 桩身波阻抗Z由桩的横截面积A、桩身材料密度等决定:Z=CA 假设在基桩中某处存在一个波阻抗变化界面,界面上部波阻抗Z1=1C1A1,上部波阻抗Z2=2C2A2。 当Z1=Z2时,表示桩截面均匀,无缺陷。 当Z1Z2时,表示在相应位置存在截面缩小或砼质量较差等缺陷,反射波速度信号与入射波速度
2、信号相位一致。 当Z1 低应变实测波速 高应变实测波速。 超声波检测混凝土强度的方法和声波透射法基本一致。 8、联线接头及信号线的保护 仪器与传感器之间通过联线进行连接,接头部位是最容易出问题的地方,无论是传感器接头、信号线接头和电源线接头,都存在硬软交接现象,一般均通过焊接、硅胶和线卡固定,承重能力和抗折拉能力较差,因此对于这些部位在加强衔接、增大接触部位摩擦力、延长硬软变换缓冲带(一般由厂家负责)的同时,实际使用过程中,应尽量避免承重和大力折拉,转场时应用手握住传感器,如果将传感器吊在半空,极容易导致接头处脱落。信号线除重点保护接头外,自身的老化和折拉变形也会严重降低寿命和使用的可靠性,贮
3、存和装箱时信号线不应长期处于折拉状态,也不应长期与易腐蚀物质相处,泥砂、盐碱、污渍应及时清洗,利用小型辘轳或线盘收放信号线是合适的,现场测试时,还应尽量避免大力牵拉和甩动信号线;为防止行人拌动,信号线接头部的前端务必固定。一旦绝缘电阻降低或接触不良以至无法使用的信号线最好弃旧购新。对于速度计而言,普通(橡胶外套含双屏蔽的)音频线可以代用。加速度计必须购买低噪声电缆线,接头也必须用专门工具安装,非常麻烦。正因如此,现场保护联线和接头十分重要。我们长期呆在校园里,没有工作收入一直都是靠父母生活,在资金方面会表现的比较棘手。不过,对我们的小店来说还好,因为我们不需要太多的投资。 实际使用中,一些人员
4、忽略了对联线和接头的保护,往往造成信号线的损坏,然后自行联接信号线,并用普通电工用黑纱布进行包箍,实测结果表明,在潮湿地区它们均存在严重的干扰,拆开后发现,绝大部分被包箍的线头均存在不同程度的锈蚀,这说明普通电工纱布不能防水,因而在野外工程试验中也不能起到较好的绝缘作用。因此应该说,单纯用这类纱布包线不合适甚至适得其反的。 正确的处理办法是选用防水绝缘胶布包箍连接部位,正确的接线方式应当如下:焊好芯线和屏蔽线,各自裹数层绝缘防水胶布。在二线的外边,屏蔽层未达到的部位包一层锡箔纸,然后再用防水胶和黑纱布箍紧。打结或其它办法处理,提高连接处的抗拉能力。低噪声电缆线连接更加麻烦,一般尽量不要增加中间
5、环节,一根线捅到底最好。 9、仪器自触发、不触发的检查 经常有测试人员反映RSM24FD浮点工程动测仪老是自触发,有时又不触发,事后检查,仪器没有任何毛病,工作状态一切良好,那么到底应当怎样检查仪器的触发是由仪器故障还是传感器故障还是联接电缆故障造成的呢? 首先谈谈传感器故障对仪器触发的影响: 速度计用万用表测量其内阻一般在500-600之间。当速度计内阻为0(即短路)时,仪器采样时应不触发;当速度计内阻为无穷大(即开路)时,仪器采样时应自触发。 加速度计用万用表很难测量其内阻阻值。但当加速度计内阻为0(即短路)时,仪器采样时应自触发;当加速度计内阻为无穷大(即开路)时,仪器采样时应该不触发。
6、 其次谈谈联接电缆故障对仪器触发的影响: 当速度计联接电缆中信号线短路时,仪器采样时应该不触发;当速度计联接电缆中信号线断开时,仪器采样时应该自触发。 当加速度计联接电缆中信号线短路时,仪器采样时应该自触发;当加速度计联接电缆中信号线断开时,仪器采样时应该不触发。 那么当仪器出现自触发或不触发现象时,我们首先应将传感器及其联接电缆联接到其它的相应通道上测试,看是否有同样的现象发生,若没有同样的现象发生则表示前面那个通道出现问题,此时按RSM动测仪说明书上的联接图,量一量六合一接头联线相应通道的两根信号线是否通断或是否短路开路,若联线有问题可修理六合一接头联线或另购一根,若联线没有问题则表示仪器
7、相应通道出现故障。若接到其它的相应通道上测试,仍出现同样的现象,则有可能是传感器及其联接电缆出现故障,也有可能是仪器的几个通道都出现故障,按上面的方法用万用表对传感器及其联接电缆进行测试,若有问题则对传感器及其联接电缆进行修理或另购,此时最好用一正常的传感器及联接电缆对仪器测试一下;若传感器及其联接电缆没有问题,则表示仪器的所有通道都出现故障,必须进行修理。3、消费“多样化” 10、时域、频域分析 如何利用频域分析判断桩身完整性?先将时域信号进行适当压缩,然后作幅值谱(加速度信号系数为积分谱),确保频域曲线的分辨率。其次,排除干扰峰,一般来说,高频端(谷侧)如凸显单一高峰,而测试系统又有出现安装谐振之可能,那么该峰当为安装谐振峰,一般来说,此峰属50Hz干扰,也不应参与完整性分析。再次,寻找桩底,亦即整桩谐振峰,排除干扰后,屏幕左侧的第一(对于小桩或柔性桩而方,如桩土系统出现如动力参数法假定的那种桩土系统共振,其频率最低,因而整桩谐振峰当为第二)峰,对应的频率即为整桩谐振基频,对于明显的端承桩而言,该频率所对应的深度大约为2倍桩长(此时,该峰幅值远高于其它峰),而绝大部分情况下与桩长对应,观察谱图中是否有形态类似的谐振峰,利用相邻峰间差等于桩长和阶数增加幅值减少(它排除干扰路线后)的关系进一步判断整桩谐振峰。如谱图
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1