ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:336.65KB ,
资源ID:3907880      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3907880.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(PWM控制技术样本.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

PWM控制技术样本.docx

1、PWM控制技术样本PWM控制技术主要内容: PWM控制的基本原理、 控制方式与PWM波形的生成方法, PWM逆变电路的谐波分析, PWM整流电路。重点: PWM控制的基本原理、 控制方式与PWM波形的生成方法。难点: PWM波形的生成方法, PWM逆变电路的谐波分析。基本要求: 掌握PWM控制的基本原理、 控制方式与PWM波形的生成方法, 了解PWM逆变电路的谐波分析, 了解跟踪型PWM逆变电路, 了解PWM整流电路。PWM( Pulse Width Modulation) 控制脉冲宽度调制技术, 经过对一系列脉冲的宽度进行调制, 来等效地获得所需要波形( 含形状和幅值) 。第3、 4章已涉及

2、这方面内容:第3章: 直流斩波电路采用, 第4章有两处: 4.1节斩控式交流调压电路, 4.4节矩阵式变频电路。本章内容PWM控制技术在逆变电路中应用最广, 应用的逆变电路绝大部分是PWM型, PWM控制技术正是有赖于在逆变电路中的应用, 才确定了它在电力电子技术中的重要地位。本章主要以逆变电路为控制对象来介绍PWM控制技术, 也介绍PWM整流电路1 PWM控制的基本原理理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时, 其效果基本相同。冲量指窄脉冲的面积。效果基本相同, 是指环节的输出响应波形基本相同。低频段非常接近, 仅在高频段略有差异。图6-1 形状不同而冲量相同的各种窄脉冲

3、面积等效原理: 分别将如图6-1所示的电压窄脉冲加在一阶惯性环节( R-L电路) 上, 如图6-2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图6-2b所示。从波形能够看出, 在i(t)的上升段, i(t)的形状也略有不同, 但其下降段则几乎完全相同。脉冲越窄, 各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲, 则响应i(t)也是周期性的。用傅里叶级数分解后将可看出, 各i(t)在低频段的特性将非常接近, 仅在高频段有所不同。图6-2 冲量相同的各种窄脉冲的响应波形用一系列等幅不等宽的脉冲来代替一个正弦半波, 正弦半波N等分, 看成N个相连的脉冲序列, 宽度相等, 但幅值不等

4、; 用矩形脉冲代替, 等幅, 不等宽, 中点重合, 面积( 冲量) 相等, 宽度按正弦规律变化。SPWM波形脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。图6-3 用PWM波代替正弦半波要改变等效输出正弦波幅值, 按同一比例改变各脉冲宽度即可。等幅PWM波和不等幅PWM波: 由直流电源产生的PWM波一般是等幅PWM波, 如直流斩波电路及本章主要介绍的PWM逆变电路, 6.4节的PWM整流电路。输入电源是交流, 得到不等幅PWM波, 如4.1节讲述的斩控式交流调压电路, 4.4节的矩阵式变频电路。基于面积等效原理, 本质是相同的。PWM电流波: 电流型逆变电路进行PWM控制, 得到的就是PW

5、M电流波。PWM波形可等效的各种波形: 直流斩波电路: 等效直流波形SPWM波: 等效正弦波形, 还能够等效成其它所需波形, 如等效所需非正弦交流波形等, 其基本原理和SPWM控制相同, 也基于等效面积原理。2 PWM逆变电路及其控制方法当前中小功率的逆变电路几乎都采用PWM技术。逆变电路是PWM控制技术最为重要的应用场合。本节内容构成了本章的主体PWM逆变电路也可分为电压型和电流型两种, 当前实用的几乎都是电压型。( 1) 计算法和调制法1、 计算法根据正弦波频率、 幅值和半周期脉冲数, 准确计算PWM波各脉冲宽度和间隔, 据此控制逆变电路开关器件的通断, 就可得到所需PWM波形。缺点: 繁

6、琐, 当输出正弦波的频率、 幅值或相位变化时, 结果都要变化2、 调制法输出波形作调制信号, 进行调制得到期望的PWM波; 一般采用等腰三角波或锯齿波作为载波; 等腰三角波应用最多, 其任一点水平宽度和高度成线性关系且左右对称; 与任一平缓变化的调制信号波相交, 在交点控制器件通断, 就得宽度正比于信号波幅值的脉冲, 符合PWM的要求。调制信号波为正弦波时, 得到的就是SPWM波; 调制信号不是正弦波, 而是其它所需波形时, 也能得到等效的PWM波。结合IGBT单相桥式电压型逆变电路对调制法进行说明: 设负载为阻感负载, 工作时V1和V2通断互补, V3和V4通断也互补。控制规律: uo正半周

7、, V1通, V2断, V3和V4交替通断, 负载电流比电压滞后, 在电压正半周, 电流有一段为正, 一段为负, 负载电流为正区间, V1和V4导通时, uo等于Ud, V4关断时, 负载电流经过V1和VD3续流, uo=0, 负载电流为负区间, io为负, 实际上从VD1和VD4流过, 仍有uo=Ud, V4断, V3通后, io从V3和VD1续流, uo=0, uo总可得到Ud和零两种电平。uo负半周, 让V2保持通, V1保持断, V3和V4交替通断, uo可得-Ud和零两种电平。图6-4 单相桥式PWM逆变电路单极性PWM控制方式( 单相桥逆变) : 在ur和uc的交点时刻控制IGBT

8、的通断。ur正半周, V1保持通, V2保持断, 当uruc时使V4通, V3断, uo=Ud, 当uruc时使V4断, V3通, uo=0。ur负半周, V1保持断, V2保持通, 当uruc时使V3断, V4通, uo=0, 虚线uof表示uo的基波分量。波形见图6-5。图6-5 单极性PWM控制方式波形双极性PWM控制方式( 单相桥逆变) : 在ur半个周期内, 三角波载波有正有负, 所得PWM波也有正有负。在ur一周期内, 输出PWM波只有Ud两种电平, 仍在调制信号ur和载波信号uc的交点控制器件通断。ur正负半周, 对各开关器件的控制规律相同, 当ur uc时, 给V1和V4导通信

9、号, 给V2和V3关断信号, 如io0, V1和V4通, 如io0, VD1和VD4通, uo=Ud, 当uruc时, 给V2和V3导通信号, 给V1和V4关断信号, 如io0, VD2和VD3通, uo=-Ud。波形见图6-6。单相桥式电路既可采取单极性调制, 也可采用双极性调制。图6-6 双极性PWM控制方式波形双极性PWM控制方式( 三相桥逆变) : 见图6-7。三相PWM控制公用uc, 三相的调制信号urU、 urV和urW依次相差120。U相的控制规律: 当urUuc时, 给V1导通信号, 给V4关断信号, uUN=Ud/2, 当urUuc时, 给V4导通信号, 给V1关断信号, u

10、UN=-Ud/2; 当给V1(V4)加导通信号时, 可能是V1(V4)导通, 也可能是VD1(VD4)导通。uUN、 图6-7 三相桥式PWM型逆变电路uVN和uWN的PWM波形只有Ud/2两种电平, uUV波形可由uUN-uVN得出, 当1和6通时, uUV=Ud, 当3和4通时, uUV=Ud, 当1和3或4和6通时, uUV=0。波形见图6-8。输出线电压PWM波由Ud和0三种电平构成, 负载相电压PWM波由(2/3)Ud、 (1/3)Ud和0共5种电平组成。图6-8 三相桥式PWM逆变电路波形防直通死区时间: 同一相上下两臂的驱动信号互补, 为防止上下臂直通造成短路, 留一小段上下臂都

11、施加关断信号的死区时间。死区时间的长短主要由器件关断时间决定。死区时间会给输出PWM波带来影响, 使其稍稍偏离正弦波。特定谐波消去法(Selected Harmonic Elimination PWMSHEPWM): 计算法中一种较有代表性的方法, 图6-9。输出电压半周期内, 器件通、 断各3次( 不包括0和) , 共6个开关时刻可控。为减少谐波并简化控制, 要尽量使波形对称。首先, 为消除偶次谐波, 使波形正负两半周期镜对称, 即: (6-1)图6-9 特定谐波消去法的输出PWM波形其次, 为消除谐波中余弦项, 使波形在半周期内前后1/4周期以/2为轴线对称。 (6-2)四分之一周期对称波

12、形, 用傅里叶级数表示为: (6-3)式中, an为 图6-9, 能独立控制a1、 a2和a3共3个时刻。该波形的an为 (6-4)式中n=1,3,5,确定a1的值, 再令两个不同的an=0, 就可建三个方程, 求得a1、 a2和a3。消去两种特定频率的谐波: 在三相对称电路的线电压中, 相电压所含的3次谐波相互抵消, 可考虑消去5次和7次谐波, 得如下联立方程: (6-5)给定a1, 解方程可得a1、 a2和a3。a1变, a1、 a2和a3也相应改变。一般, 在输出电压半周期内器件通、 断各k次, 考虑PWM波四分之一周期对称, k个开关时刻可控, 除用一个控制基波幅值, 可消去k1个频率

13、的特定谐波, k越大, 开关时刻的计算越复杂。除计算法和调制法外, 还有跟踪控制方法, 在6.3节介绍( 2) 异步调制和同步调制载波比载波频率fc与调制信号频率fr之比, N= fc / fr。根据载波和信号波是否同步及载波比的变化情况, PWM调制方式分为异步调制和同步调制: 1、 异步调制异步调制载波信号和调制信号不同步的调制方式。一般保持fc固定不变, 当fr变化时, 载波比N是变化的。在信号波的半周期内, PWM波的脉冲个数不固定, 相位也不固定, 正负半周期的脉冲不对称, 半周期内前后1/4周期的脉冲也不对称。当fr较低时, N较大, 一周期内脉冲数较多, 脉冲不对称的不利影响都较

14、小, 当fr增高时, N减小, 一周期内的脉冲数减少, PWM脉冲不对称的影响就变大。因此, 在采用异步调制方式时, 希望采用较高的载波频率, 以使在信号波频率较高时仍能保持较大的载波比。2、 同步调制同步调制N等于常数, 并在变频时使载波和信号波保持同步。基本同步调制方式, fr变化时N不变, 信号波一周期内输出脉冲数固定。三相, 公用一个三角波载波, 且取N为3的整数倍, 使三相输出对称。为使一相的PWM波正负半周镜对称, N应取奇数。当N=9时的同步调制三相PWM波形如图6-10所示。fr很低时, fc也很低, 由调制带来的谐波不易滤除, fr很高时, fc会过高, 使开关器件难以承受。

15、为了克服上述缺点, 能够采用分段同步调制的方法。3、 分段同步调制把fr范围划分成若干个频段, 每个频段内保持N恒定, 不同频段N不同。在fr高的频段采用较低的N, 使载波频率不致过高, 在fr低的频段采用较高的N, 使载波频率不致过低。图6-11, 分段同步调制一例。为防止fc在切换点附近来回跳动, 采用滞后切换的方法。同步调制比异步调制复杂, 但用微机控制时容易实现。可在低频输出时采用异步调制方式, 高频输出时切换到同步调制方式, 这样把两者的优点结合起来, 和分段同步方式效果接近。图6-10 同步调制三相PWM波形图6-11 分段同步调制方式举例( 3) 规则采样法按SPWM基本原理,

16、自然采样法中要求解复杂的超越方程, 难以在实时控制中在线计算, 工程应用不多。规则采样法特点: 工程实用方法, 效果接近自然采样法, 计算量小得多。规则采样法原理: 图6-12, 三角波两个正峰值之间为一个采样周期Tc。自然采样法中, 脉冲中点不和三角波一周期中点( 即负峰点) 重合。规则采样法使两者重合, 每个脉冲中点为相应三角波中点, 计算大为简化。三角波负峰时刻tD对信号波采样得D点, 过D作水平线和三角波交于A、 B点, 在A点时刻tA和B点时刻tB控制器件的通断, 脉冲宽度 和用自然采样法得到的脉冲宽度非常接近。图6-12 规则采样法规则采样法计算公式推导: 正弦调制信号波公式中,

17、a称为调制度, 0a1; r为信号波角频率。从图6-12因此可得: (6-6)三角波一周期内, 脉冲两边间隙宽度 (6-7)三相桥逆变电路的情况: 一般三相的三角波载波公用, 三相调制波相位依次差120, 同一三角波周期内三相的脉宽分别为U、 V和W, 脉冲两边的间隙宽度分别为u、 v和w, 同一时刻三相正弦调制波电压之和为零, 由式(6-6)得 (6-8)由式(6-7)得: (6-9)故由式( 6-8) 可得: (6-10)故由式( 6-9) 可得: (6-11)利用以上两式可简化三相SPWM波的计算( 4) PWM逆变电路的谐波分析使用载波对正弦信号波调制, 产生了和载波有关的谐波分量。谐

18、波频率和幅值是衡量PWM逆变电路性能的重要指标之一。分析双极性SPWM波形: 同步调制可看成异步调制的特殊情况, 只分析异步调制方式。分析方法: 不同信号波周期的PWM波不同, 无法直接以信号波周期为基准分析, 以载波周期为基础, 再利用贝塞尔函数推导出PWM波的傅里叶级数表示式, 分析过程相当复杂, 结论却简单而直观。1、 单相的分析结果: 不同调制度a时的单相桥式PWM逆变电路在双极性调制方式下输出电压的频谱图如图6-13所示。其中所包含的谐波角频率为 式中, n1, 3, 5, 时, k=0, 2, 4, ; n=2, 4, 6, 时, k=1, 3, 5, 。能够看出, PWM波中不含

19、低次谐波, 只含有角频率为c, 及其附近的谐波, 以及2c、 3c等及其附近的谐波。在上述谐波中, 幅值最高影响最大的是角频率为c的谐波分量。图6-13 单相PWM桥式逆变电路输出电压频谱图2、 三相的分析结果: 三相桥式PWM逆变电路采用公用载波信号时不同调制度a时的三相桥式PWM逆变电路输出线电压的频谱图如图6-14所示。在输出线电压中, 所包含的谐波角频率为式中, n=1, 3, 5, 时, k=3(2m-1)1, m=1, 2, ; 6m +1, m =0, 1, ; n =2, 4, 6, 时, k = 6m -1, m =1, 2, 。和单相比较, 共同点是都不含低次谐波, 一个较

20、显著的区别是载波角频率c整数倍的谐波被消去了, 谐波中幅值较高的是c2r和2cr。图6-14 三相桥式PWM逆变电路输出线电压频谱图SPWM波中谐波主要是角频率为c、 2c及其附近的谐波, 很容易滤除。当调制信号波不是正弦波时, 谐波由两部分组成: 一部分是对信号波本身进行谐波分析所得的结果, 另一部分是由于信号波对载波的调制而产生的谐波。后者的谐波分布情况和SPWM波的谐波分析一致。( 5) 提高直流电压利用率和减少开关次数直流电压利用率逆变电路输出交流电压基波最大幅值U1m和直流电压Ud之比。提高直流电压利用率可提高逆变器的输出能力; 减少器件的开关次数能够降低开关损耗; 正弦波调制的三相

21、PWM逆变电路, 调制度a为1时, 输出相电压的基波幅值为Ud2, 输出线电压的基波幅值为, 即直流电压利用率仅为0.866。这个值是比较低的, 其原因是正弦调制信号的幅值不能超过三角波幅值, 实际电路工作时, 考虑到功率器件的开通和关断都需要时间, 如不采取其它措施, 调制度不可能达到1。采用这种调制方法实际能得到的直流电压利用率比0.866还要低。1、 梯形波调制方法的思路采用梯形波作为调制信号, 可有效提高直流电压利用率。当梯形波幅值和三角波幅值相等时, 梯形波所含的基波分量幅值更大。梯形波调制方法的原理及波形, 见图6-15。梯形波的形状用三角化率s =Ut/Uto描述, Ut为以横轴

22、为底时梯形波的高, Uto为以横轴为底边把梯形两腰延长后相交所形成的三角形的高。s =0时梯形波变为矩形波, s =1时梯形波变为三角波。梯形波含低次谐波, PWM波含同样的低次谐波, 低次谐波( 不包括由载波引起的谐波) 产生的波形畸变率为。图6-16, 和U1m /Ud随s 变化的情况。图6-17, s 变化时各次谐波分量幅值Unm和基波幅值U1m之比。s = 0.4时, 谐波含量也较少, 约为3.6%, 直流电压利用率为1.03, 综合效果较好。图6-15 梯形波为调制信号的PWM控制梯形波调制的缺点: 输出波形中含5次、 7次等低次谐波。实际使用时, 能够考虑当输出电压较低时用正弦波作

23、为调制信号, 使输出电压不含低次谐波; 当正弦波调制不能满足输出电压的要求时, 改用梯形波调制, 以提高直流电压利用率。 图6-16 s 变化时的d 和直流电压利用率 图6-17 s 变化时的各次谐波含量2、 线电压控制方式( 叠加3次谐波) 对两个线电压进行控制, 适当地利用多余的一个自由度来改进控制性能。目标使输出线电压不含低次谐波的同时尽可能提高直流电压利用率, 并尽量减少器件开关次数。直接控制手段仍是对相电压进行控制, 但控制目标却是线电压。相对线电压控制方式, 控制目标为相电压时称为相电压控制方式。在相电压调制信号中叠加3次谐波, 使之成为鞍形波, 输出相电压中也含3次谐波, 且三相

24、的三次谐波相位相同。合成线电压时, 3次谐波相互抵消, 线电压为正弦波。如图6-18所示。鞍形波的基波分量幅值大。除叠加3次谐波外, 还可叠加其它3倍频的信号, 也可叠加直流分量, 都不会影响线电压。图6-18 叠加3次谐波的调制信号3、 线电压控制方式( 叠加3倍次谐波和直流分量) : 叠加up, 既包含3倍次谐波, 也包含直流分量, up大小随正弦信号的大小而变化。设三角波载波幅值为1, 三相调制信号的正弦分别为urU1、 urV1和urW1, 并令: (6-12)则三相的调制信号分别为 (6-13) 图6-19 线电压控制方式举例不论urU1、 urV1和urW1幅值的大小, urU、

25、urV、 urW总有1/3周期的值和三角波负峰值相等。在这1/3周期中, 不对调制信号值为-1的相进行控制, 只对其它两相进行控制, 因此, 这种控制方式也称为两相控制方式。优点: ( 1) 在1/3周期内器件不动作, 开关损耗减少1/3( 2) 最大输出线电压基波幅值为Ud, 直流电压利用率提高( 3) 输出线电压不含低次谐波, 优于梯形波调制方式( 6) PWM逆变电路的多重化和一般逆变电路一样, 大容量PWM逆变电路也可采用多重化技术。采用SPWM技术理论上能够不产生低次谐波, 因此, 在构成PWM多重化逆变电路时, 一般不再以减少低次谐波为目的, 而是为了提高等效开关频率, 减少开关损

26、耗, 减少和载波有关的谐波分量。PWM逆变电路多重化联结方式有变压器方式和电抗器方式, 利用电抗器联接实现二重PWM逆变电路的例子如图6-20所示。电路的输出从电抗器中心抽头处引出, 图中两个逆变电路单元的载波信号相互错开180, 所得到的输出电压波形如图6-21所示。图中, 输出端相对于直流电源中点的电压, 已变为单极性PWM波了。输出线电压共有0、 ( 1/2) Ud、 Ud五个电平, 比非多重化时谐波有所减少。 一般多重化逆变电路中电抗器所加电压频率为输出频率, 因而需要的电抗器较大。而在多重PWM型逆变电路中, 电抗器上所加电压的频率为载波频率, 比输出频率高得多, 因此只要很小的电抗

27、器就能够了。二重化后, 输出电压中所含谐波的角频率仍可表示为, 但其中当n奇数时的谐波已全部被除去, 谐波的最低频率在附近, 相当于电路的等效载波频率提高了一倍。图6-20 二重PWM型逆变电路图6-21 二重PWM型逆变电路输出波形电抗器上所加电压频率为载波频率, 比输出频率高得多, 很小。输出电压所含谐波角频率仍可表示为nwc+kwr, 但其中n为奇数时的谐波已全被除去, 谐波最低频率在2wc附近, 相当于电路的等效载波频率提高一倍。3 PWM跟踪控制技术PWM波形生成的第三种方法跟踪控制方法。把希望输出的波形作为指令信号, 把实际波形作为反馈信号, 经过两者的瞬时值比较来决定逆变电路各器

28、件的通断, 使实际的输出跟踪指令信号变化, 常见的有滞环比较方式和三角波比较方式。( 1) 滞环比较方式1、 电流跟踪控制基本原理: 把指令电流i*和实际输出电流i的偏差i*-i作为滞环比较器的输入, 比较器输出控制器件V1和V2的通断。V1( 或VD1) 通时, i增大, V2( 或VD2) 通时, i减小。经过环宽为2DI的滞环比较器的控制, i就在i*+DI和i*-DI的范围内, 呈锯齿状地跟踪指令电流i*。滞环环宽对跟踪性能的影响: 环宽过宽时, 开关频率低, 跟踪误差大; 环宽过窄时, 跟踪误差小, 但开关频率过高。电抗器L的作用: L大时, i的变化率小, 跟踪慢。L小时, i的变

29、化率大, 开关频率过高。图6-22 滞环比较方式电流跟踪控制举例图6-23 滞环比较方式的指令电流和输出电流三相的情况: 图6-24 三相电流跟踪型PWM逆变电路图6-25 三相电流跟踪型PWM逆变电路输出波形采用滞环比较方式的电流跟踪型PWM变流电路有如下特点( 1) 硬件电路简单( 2) 实时控制, 电流响应快( 3) 不用载波, 输出电压波形中不含特定频率的谐波( 4) 和计算法及调制法相比, 相同开关频率时输出电流中高次谐波含量多( 5) 闭环控制, 是各种跟踪型PWM变流电路的共同特点2、 电压跟踪控制采用滞环比较方式实现电压跟踪控制。如图6-26所示。把指令电压u*和输出电压u进行

30、比较, 滤除偏差信号中的谐波, 滤波器的输出送入滞环比较器, 由比较器输出控制开关通断, 从而实现电压跟踪控制。和电流跟踪控制电路相比, 只是把指令和反馈从电流变为电压。输出电压PWM波形中含大量高次谐波, 必须用适当的滤波器滤除。图6-26 电压跟踪控制电路举例u*=0时, 输出u为频率较高的矩形波, 相当于一个自励振荡电路。u*为直流时, u产生直流偏移, 变为正负脉冲宽度不等, 正宽负窄或正窄负宽的矩形波。u*为交流信号时, 只要其频率远低于上述自励振荡频率, 从u中滤除由器件通断产生的高次谐波后, 所得的波形就几乎和u* 相同, 从而实现电压跟踪控制。( 2) 三角波比较方式基本原理: 不是把指令信号和三角波直接进行比较, 而是闭环控制。把指令电流i*U、 i*V和i*W和实际输出电流iU、 iV、 iW进行比较, 求出偏差, 放大器A放大后, 再和三角波进行比较, 产生PWM波形。放大器A一般具有比例积分特性或比例特性, 其系数直接影响电流跟踪特性。图6-27 三角波比较方式电流跟踪型逆变电路特点: 开关频率固定, 等于载波频率, 高频滤波器设计方便; 为改进输出电压波形, 三角波载波常见三相; 和滞环比较控制方式相比, 这种控制方式输出电流谐波少。定时比较方式: 不用滞环比较器, 而是设置一个固定的时钟。以固定采样周期对指令信号和被控量采样, 按偏差的极性来控制开关

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1