ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:975.56KB ,
资源ID:3883716      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3883716.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(5G在车联网中地的应用.docx)为本站会员(b****3)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

5G在车联网中地的应用.docx

1、5G在车联网中地的应用1 引言近年来,因汽车数量持续增长而引起的交通安全、出行效率、环境保护等问题日益突出,车联网相关领域的研究和开展受到了广泛关注。车联网是以车内网、车际网和车载移动互联网为根底,融合了传感器、RFIDradio frequency identification、数据挖掘、自动控制等相关技术,按照约定的通信协议和标准,在车XX:车、路、行人、互联网交互过程中,实现车辆与公众网络的动态移动通信,是物联网技术在交通系统领域的典型应用。在车联网中,车辆作为移动通信设备和用户的载体,以拓扑节点的形式组织移动网络拓扑。由于车辆自身的移动性,车载通信具有移动区域受限、网络拓扑变化快、网络

2、频繁接入和中断、节点覆盖X围大、通信环境复杂等特点1。根据车联网的上述特征,当前车联网的实施存在以下多方面挑战和困难。1在体系结构方面,由于移动互联网通信技术的快速开展,为满足用户的多功能体验,车联网的体系结构变得复杂。在车载移动互联网中,路侧单RSU, road side unit作为车辆自组网VANET, vehicular ad hoc network无线接入点,将车辆以与道路等信息上传至互联网并发布相关交通信息,这种车与根底设施V2I, vehicle toinfrastructure的协作通信模型需要大量的RSU支撑,增加了建设的本钱和能源消耗2。2在通信方面,车联网中存在多种类型的

3、通信网络,网络使用不同的标准和协议,数据处理和网络的融合不完善,影响车联网系统运行效率。虽然IEEE 802.11p 标准的车辆自组网通信在高速运行环境下传输距离远、分组丢失率低、可靠性高,但在极其复杂的非视距NLOS,non-line of sight环境下通信质量会受到不同程度的干扰2。另外,由于车辆的高速移动,需要快速可靠的网络接入与信息交互,时延受限成为当前车联网面临的重要问题。3在安全方面,车联网中的用户信息都将连接在该网络上,随时随地被感知,很容易被干扰和窃取,严重影响了车联网体系的安全。当前车联网在每一层都存在不同程度的威胁:在感知层,车辆单元OBU, on-board unit

4、和路侧单元RSU 节点的物理安全、感知信息的无线传输;在网络层,数据破坏、数据泄露、虚假信息等安全与隐私问题3;在应用层,也存在身份假冒、越权操作等由于技术方面的不足或因管理不当而带来的隐形危害。近年来,车联网在体系结构、通信以与安全方面存在的问题成为当前学术界和工业界的研究热点,而随着第5 代移动通信5G的快速开展,5G 移动通信网络将融合大规模天线阵列、超密集组网、终端直通、认知无线电CR, cognitive radio等先进技术4,以更加灵活的体系结构解决多样化应用场景中差异化性能指标带来的挑战。其中,5G 通信技术在低时延、高移动性车联网场景的应用,解决了当前车联网面临的多方面问题和

5、挑战,使OBU 在高速移动下获得更好的性能。而且,5G 通信技术让车联网不用单独建设基站和服务根底设施,而是随着5G 通信技术的应用普与而普与,为车联网的开展带来历史性的机遇。2 5G 车联网的体系结构未来5G 通信技术在车联网场景的应用使车联网拥有更加灵活的体系结构和新型的系统元素5G 车载单元OBU、5G 基站、5G 移动终端、5G 云服务器等。除了在车内网、车际网、车载移动互联网实现V2XX:车、路、行人与互联网等信息交互以外,5G 车联网还将实现OBU、基站、移动终端、云服务器的互联互通,分别给予它们特殊的功能和通信方式。5G 车联网体系结构的特点主要表现在OBU多网接入与融合、OBU

6、多渠道互联网接入、多身份5G 基站。2.1 OBU 多网接入与融合目前,在车联网中,多种网络共存,包括基于IEEE 802.11a/b/g/n/p 标准协议的WLAN、2G/3G 蜂窝通信、LTE 以与卫星通信等网络,网络在车联网通信中使用不同的标准和协议,数据处理和信息交互不完善。而5G 车联网将融合多种网络,实现无缝的信息交互和通信切换。5G 移动通信网络是一个包括宏蜂窝层和设备层的双层网络5,其中,宏蜂窝层与传统蜂窝网络相似,涉与基站和终端设备之间的直接通信。在设备层通信中,设备到设备D2D,dedevice-to-device通信是5G 移动通信技术的重要组成局部,是一种终端与终端之间

7、不借助任何网络根底设施直接进展信息交互的通信方式6。根据基站对资源分配和对起始、目的、中继终端节点的控制情况,D2D 终端通信方式可分成4 类5。1基站控制链路的终端。终端设备可以在信号覆盖较差的环境下,通过邻近终端设备的信息与基站通信,其中,通信的链路建立由基站和中继设备控制,在这种通信方式下,终端设备可实现较高的服务质量QoS, quality of service。2基站控制链路的终端直接通信。终端之间的信息交互与通信没有基站的协助,但需要基站控制链路的建立。3终端控制链路的终端。基站不参与通信链路的建立和信息交互,源终端与目的终端通过中继设备协调控制彼此之间的通信。4终端控制链路的终端

8、直接通信。终端之间的通信没有基站和终端设备的协助,可自行控制链路的建立,这种方式有利于减轻设备之间的干扰。图1 展示了5G 移动通信网的D2D 通信方式在车联网的应用。未来5G 车联网D2D 通信技术将为车联网提供新的通信模式。其中,在车载移动互联网,OBU 可直接通过5G 基站或中继包括邻近的OBU、用户移动终端快速接入互联网,实现车与云服务器的信息交互;在车内网,为充分实现用户与车辆的人机交互,以OBU 为媒介,与用户5G 移动终端之间在没有基站或其他终端设备协助情况下,通过自行控制链路,进展短距离的车辆数据传输;在基于D2D 的通信网络中,5G 车载单元可在网络通信边缘或信号拥塞地带基于

9、单跳或多跳的D2D 建立ad hoc 网络,实施车辆自组网通信5。通过以上对5G 车联网通信方式的分析,如图2 所示,5G 车联网将改变基于IEEE 802.11p标准的车联网通信方式,实施多实体之间OBU之间以与OBU 与车主移动终端、行人、5G 基站、互联网之间的信息交互,实现OBU 的多网接入2以与车内网、车际网、车载移动互联网的“三网融合。2.2 多身份5G 基站传统的基站作为终端通信的中继,在数据和链路控制等方面起着重要作用;而5G 基站的大量部署,将实现超密集网络,从而给予用户准确定位、协助终端通信等功能。在基于5G毫米波的通信网络中,D2D 技术涉与终端与基站D2B、基站与基站B

10、2B之间的直接通信7。其中,D2B 与B2B 以自组织方式通信将是一个重要的突破,这决定了5G 基站将以不同的角色发挥至关重要的作用。在车联网的应用场景,5G 基站将拥有以下功能。1协作中继。5G 基站具备传统基站的中继功能,作为无线接入点,协助车与互联网通信。2担当RSU。在高速运行的环境下,车辆自组网通信中的5G 基站将取代RSU,与OBU 实时通信,通过广播的方式向车辆自组网中的车辆发布交通信息,并协助车与车通信以与多个车辆自组网通信。这不仅节约了车联网体系的构建本钱,而且解决了V2I 协作通信系统8融合面临的多方面问题9。3准确定位。GPS 作为当前OBU 的定位系统是非常脆弱的,容易

11、受到欺骗、阻塞等多种类型的攻击。并且,GPS 的信号容易受到天气影响,导致无法实施准确定位2。未来5G 基站的大量部署使用更高的频率和信号带宽,实施密集网络以与大规模的天线阵列,使OBU 在NLOS 复杂环境下减少定位误差。其次,D2D 通信充分利用高密度的终端设备连接的优势,从以下两方面提高定位性能10。一方面,大量的D2D 链路可以为确定车辆之间的伪距提供信号观测,如式3和式5所示,D2D 通信不仅使OBU 可以接收来自邻近车辆和移动终端的信息,其同步和信道估计单元等信号处理的实体还可被复用于信号传输的延时估计。在车联网中,D2D 通信模式提供了一个网状网络,N 个OBU 构成的最大链路数

12、为NN-1。另一方面,OBU 的D2D 通信链路为定位直接交换所需数据,可进一步加快局部决策,改良位置估计过程的收敛时间。图3 为基于D2D 的协作定位系统,车载终端OBU1 从基站2 接收的信号为2.3 多渠道互联网接入在将来5G 移动网络通信中,文献5指出5G终端通过自行控制通信链路建立,定期广播身份信息,其他邻近的终端与时发现并评估多个信道状态信息CSI, channel state information,自适应地选择当前最优的信道11,决定建立一个5G 终端之间的直接通信或选择适宜的中继消息,这种通信方式使5G 终端以最优的方式实现信息交互,同时也提高频谱和能源的利用率。根据5G 终

13、端高效、多样化的通信方式,OBU可通过多种渠道接入互联网。如图4 所示,OBU除了可按照当前车联网的V2I 协作通信方式外,还可通过邻近的5G基站、5G 车载单元OBU 和5G 移动终端等多种渠道自适应地选择信道质量较好的方式接入互联网。3 5G 车联网特征5G 移动通信融合CR、毫米波、大规模天线阵列、超密集组网、全双工通信FD,wirelessfull-duplex等关键技术4,显著提高了通信系统的性能。在车联网应用场景中,相比IEEE 802.11p标准的通信,5G 车联网的特点主要表现在低时延与高可靠性、频谱和能源高效利用、更加优越的通信质量。3.1 低时延与高可靠性作为车联网信息的发

14、送端、接收端和中继节点,消息传递过程必须保证性、安全性和高数据传输率,通信具有严格的时延限制12。目前,研究的车联网通信数据的密集使用以与频繁交换,对实时性要求非常高,然而,受无线通信技术的限制如带宽、速度和域名等,通信时延达不到毫秒级,不能支持安全互联需求。5G 高/超高密集度组网、低的设备能量消耗大幅地减小信令开销,解决了带宽和时延相关问题,且5G 的时延达到了毫秒级,满足了低延时和高可靠性需求,成为车联网开展的最大突破口。在5G 车联网通信中,为更好地研究与应用低时延和高可靠性的链路特征,文献13分析了适应于以300 km/h 速度移动车辆通信的5G 自适应天线,提高了OBU 与基站的通

15、信质量,降低了在信道估计与数据传输之间产生的时延。文献14提出利用网络功能虚拟化NFV, network function virtualization和软件定义网络SDN, software definednetwork技术提高5G 网络体系结构的灵活性,并提出实现低时延服务的解决方案,主要包括服务预约和配置、减少IP 地址解析的时延、连续服务时延的优化。其中,5G 网络服务的优化不仅要支持当前的应用服务,而且要适应高速增长的信息量并满足将来多样性的服务需求15,尤其是对于时延高度敏感的通信,如车联网V2X 通信场景,严格要求低时延和高可靠性,是5G 网络体系结构应用的显著特点。根据表1 设

16、置的主要参数实施基于D2D 模式的V2V 通信时延仿真,得到了如图5 所示的结果。随着车辆数目的增加,端到端的通信时延根本保持平稳状态,而5G 车联网基于D2D 技术将实现车与车、车与基站以与5G 移动终端通信,其空口时延在1 ms左右,端到端时延控制在毫秒级14,延时性能比IEEE 802.11p 标准的通信方式优越,有效地保障了通信的可靠性2。3.2 频谱和能源高效利用频谱和能源的高效利用是5G用户体验的一个重要的特征。5G 通信技术在车联网的应用,将解决当前车联网资源受限等问题。5G 车联网的频谱和能源高效利用主要表现在以下几个方面。1 D2D 通信。在5G 通信中,D2D 通信方式通过

17、复用蜂窝资源实现终端直接通信。5G 车载单元将基于D2D 技术实现与邻近的车载单元、5G 基站、5G 移动终端的车联网自组网通信和多渠道互联网接入。通过这种方式提高车联网通信的频谱利用率16,与基于IEEE 802.11p 标准的车联网V2X 通信方式相比,减少了本钱的支出,节约了能源。2全双工通信。5G 移动终端设备使用全双工通信方式,允许不同的终端之间、终端与5G 基站之间在一样频段的信道可同时发送并接收信息,使空口频谱效率提高一倍,从而提高了频谱使用效率17。3认知无线电。认知无线电技术是5G 通信网络重要的技术之一18。在车联网应用场景中,车载终端通过对无线通信环境的感知,获得当前频谱

18、空洞信息,快速接入空闲频谱,与其他终端高效通信。这种动态频谱接入的应用满足了更多车载用户的频谱需求,提高频谱资源的利用率。其次,车载终端利用认知无线电技术可以与其他授权用户共享频谱资源,从而解决无线频谱资源短缺的问题。除了以上提到的频谱和能源高效应用外,最近的相关研究明确,在不影响通信性能的情况下,5G 基站的大规模天线阵列的部署有潜在的节约能源作用1921。其次,在车辆自组网中,5G 车载单元与时发现邻近的终端设备,且与之通信的能力也会减少OBU 间通信的能源消耗。3.3 更加优越的通信质量5G 通信网络被期望拥有更高的网络容量并且可为每个用户提供每秒千兆级的数据速率,以满足QoS的要求。文

19、献7提出频段为30300 GHz的毫米波通信系统可为5G终端之间以与终端与基站之间以更好的通信质量进展信息交互。其中,毫米波拥有极大的带宽,可提供非常高的数据传输速率,并减少环境的各种干扰,降低终端之间连接中断的概率。表2 是5G 车联网与基于IEEE 802.11p 标准的车联网在VANET 关键技术参数方面的比拟2,结果明确,5G 车联网拥有比当前车联网更加优越的无线链路特征。1通信距离。5G 车联网V2V 通信的最大距离大约为1 000 m,从而可以解决IEEE 802.11p车辆自组网通信中短暂、不连续的连接问题,尤其是在通信过程中遇到大型物体遮挡的NLOS 环境下。2传输速率。5G

20、车联网为V2X 通信提供高速的下行和上行链路数据速率最大传输速率为1 Gbit/s。从而使车与车、车与移动终端之间实现高质量的音视频通信。3高速移动性。与IEEE 802.11p 标准通信相比,5G 车联网支持速度更快的车辆通信,其中,支持车辆最大的行驶速度约为350 km/h。4 挑战5G 车联网将先进的5G 通信技术应用在车联网领域,改善了传统车联网的通信方式、通信质量,优化了车联网的体系结构,为车联网开展带来了重大变革,但5G 车联网也面临着重大的挑战,主要表现在干扰管理、通信安全和驾驶安全3 个方面5。4.1 干扰管理对于有限资源的高效利用,资源复用和密集化被应用于5G 蜂窝网络,尽管

21、可以增加信号容量和吞吐量并额外地提高宏蜂窝与局域网络的资源共享,但优点出现的同时却产生了同信道干扰问题。因此,作为二元体系5的5G 移动通信网络,干扰管理是个重要问题。基于D2D 技术的基站控制通信链路的终端直接通信以与终端作为中继的通信方式,基站可以进展资源分配和链路管理,并实施集中化的管理方法减轻干扰问题22。但对于将来的5G 车载单元之间的直接通信,在没有基站作为中继或者管理链路的情况下,5G 车联网通信中的干扰不可防止23。表3 分析了在5G 移动通信网络与基于D2D通信网络中的干扰管理方法与其特点。为了处理将来5G 移动通信网中的干扰问题,文献24提出了2 种技术:先进的接收机技术和

22、联合调度技术。其中,先进的接收机技术不仅处理了位于小区边缘的小区之间的干扰,而且在大规模多输入多输出MIMO, multiple-input multiple-output状况下,也解决了小区内的干扰。联合调度技术被广泛应用于蜂窝系统和链路多变网络的干扰管理。但在多点协作机制中,传输速率和多小区的传输方案不能自行控制,在实现快速的网络分布和互联互通时,利用联合调度实施先进的干扰管理方案需要5G 通信系统严格规定。针对5G 终端之间基于D2D 通信网络中产生的干扰,文献25提出了2 种资源分法:一种是在D2D 与其他终端设备之间分配正交资源,这是一种静态分法;另一种是在D2D 与其他终端设备之间

23、分配并行资源,这是一种动态分法,可以更高效地使用无线电资源,但它可能会带来新的干扰问题。针对车联网中基于D2D 的V2X 通信场景中产生的干扰问题,文献2提出一种基于CR 的资源配置方案,这种方法有效使用空白频谱,不仅提高频谱和能源的利用效率,而且不会产生新的干扰问题。当通过控制功率来处理基于D2D 的V2V 通信场景中产生的干扰问题时,为了不对车载移动通信网中OBU 或者其他蜂窝用户通信产生严重干扰,基于D2D 通信的OBU 需要检测在每个信道上相应的功率值。当OBU 复用蜂窝通信用户的上行通信链路资源时,其发射功率应满足总之,在基于D2D 的V2X 通信场景中,要从各个角度充分考虑干扰管理

24、问题,适当地选择复用信道并遵守以下原如此:1处理由D2D通信链路产生的干扰,要确保蜂窝用户能够满足自身SINR 的需求;2确保由蜂窝用户产生的干扰对基于D2D 的V2X 通信链路影响尽可能地小26。4.2 安全通信和隐私保护在车联网开展的过程中,安全作为一项重要挑战一直备受关注。在当前的车联网通信中存在严重的安全问题,例如,在VANET 中可能存在恶意的车辆,恶意的车辆发送虚假信息欺骗其他车辆,造成车辆信息和车主隐私信息的泄露,另外,一些恶意的车辆还会偷窃多个身份,伪造交通场景,影响交通秩序、破坏网络正常运行,威胁用户生命财产安全,因此安全认证和隐私保护是车联网开展的焦点问题。为了支持数据流量

25、的不断增加,5G 无线通信网络需要更高的容量和高效的安全机制。而在5G网络通信体系中,终端用户和不同的接入点之间需要更加频繁的认证以防止假冒终端和中间人的攻击。5G 车联网的用户和车辆相关数据的传输需要经过其他车载单元、移动终端以与基站,因此,必须采取有效措施保证通信的安全性和数据的完整性。为了解决车联网通信中所面临的安全问题,早期提出了一些安全认证方案,包括基于公钥根底设施PKI, public keyinfrastructure 的认证27、基于身份签名identity-based signature的认证28、基于群签名group signature的认证29、基于某某的访问控制30等。

26、近期,针对5G 安全通信问题,文献15提出将SDN 技术用于5G 移动通信网络,其中,SDN 的主要特点是将网络控制面与数据面别离,促进5G 网络智能化和可编程性,实现高效的安全管理。文献31研究了用于控制ad hoc D2D 网络并在ad hoc 环境下基于群密钥协商方法管理群密钥的ad hoc D2D 协议。此外,为了在窃听者存在的场景下提高可靠的传输速率,文献32研究了一种用于D2D 无线通信中设备自适应地选择协作通信机制和基于协作架构的最优功率分配的分布式算法。在5G 车联网复杂的通信过程中必须实施多方安全认证。如图6 所示,5G 车联网实施的多方安全认证主要包括车内无线局域网中用户移

27、动终端与5G 车载单元OBU 的强安全认证,车际网中车与车之间、车与行人之间、车与中继5G 移动终端或者车载单元之间以与车与5G 基站之间的安全认证。在保证通信安全过程中,驾驶人员更关心的是隐私的安全性,这关系到车联网能否被市民承受并广泛使用。在通信过程中,车辆无线信号在开放的空间中传输,容易被窃取并暴露车辆和用户的身份,假如车内数据总线网络遭入侵,可能造成不可预估的灾难,如何保障用户和车辆的隐私安全,成为近年来的研究热点。除了使用近期提到的匿名算法,如采用动态匿名方案33,OBU在一定时间间隔或当车辆进入不同区域后都要更换匿名,排除通过对匿名收集、分析而捕获车辆身份的攻击。考虑到5G 车联网

28、多种异构网络的存在,将会出现新型的安全通信与隐私保护协议2。文献15研究了在5G 终端通信中利用SDN 技术,根据数据流的敏感度级别,为数据流选择多种传输路径,在接收端,只有接收者可以用私人密钥解密并重组来自多个网络传输路径的数据流,从而防止隐私在无线接入点泄露。随着计算机的计算能力不断突破,尤其是量子技术的逐渐成熟,传统基于计算能力的高层加密技术变得不牢靠。基于香农信息论的物理层安全技术对计算复杂度依赖性低,窃听者即使拥有较强的计算能力也不会对系统的安全性能产生巨大的影响。随着物理层安全研究的不断深入,较强的抵制窃听能力使其成为高层加密安全的一种有效补充,进一步增强通信系统的安全性。系统的某

29、某容量CS 可以表示为用户信道容量与窃听用户信道容量之差其中,物理层安全技术在车联网安全通信系统中同样发挥着重要的作用。车联网通信中多个窃听者的存在以与车辆节点在通信网络中快速地连通与中断,使安全密钥分发与管理成为亟待解决的问题。针对该问题,本文认为可以采用一种基于物理层安全的密钥分发方法,将密钥分发和传输安全车载数据别离。在密钥分发阶段,采用相应的物理层安全方案来最大程度确某某钥分发信道的安全性。当密钥分发完成后,利用分配的密钥对车载数据进展加密后传输,该方案可以保证密钥分发过程的安全性。在5G 车联网通信系统中,物理层安全通过融合5G 先进技术保证数据的某某性和可靠性,其中异构网络、大规模

30、多输入多输出MIMO,multiple-input multiple-output、毫米波通信技术在物理层安全有巨大的应用前景。1 5G 车联网中,车辆作为异构网络中设备层的节点可通过D2D 通信链路与其他设备直接通信或通过中继节点实施多跳通信。在异构网络设备层通信模式下,邻近的车辆以与其他终端节点都可能是潜在的窃听者,为保证通信数据的安全性,一方面要充分考虑非目的车辆和设备节点的相关物理层特性,另一方面需要确立D2D 通信最优的中继选择方案,充分考虑可靠的安全通信机制。其中,可以使用基于可信设备列表的封闭式接入方法来保证车辆和设备节点数据在交换过程中的安全性,但由于高速运行的车辆节点需要在有

31、效的通信X围内快速建立连接并进展大文件传输,还要充分考虑通信时延和中断概率。此外,在异构网络中,基站作为车联网重要的路边根底设施,其适当的部署密度可优化某某速率。对于车联网物理层安全的评估,本文考虑如图7 所示的基于D2D 的V2V 通信异构网络物理层安全系统模型,该模型所示的车联网场景中N个蜂窝用户主要包括手机移动终端和车载终端集合为n = user1,user2,userN,它们利用不同的信道通信,其中,基于D2D 的V2V 通信链路被窃听者恶意的车辆或者个人窃听。VVP 是V2V 通信链路的发射功率,VVh是由V2V 通信链路的发送端到接收端的信道增益,VEh为基于D2D 的V2V 通信

32、链路的发送端到窃听者的信道增益,BEh是基站发到窃听者的信道增益,BVh为从基站到基于D2D 的V2V 通信接收端的信道增益,窃听者接收的信号为通过构造Stackelberg博弈框架,考虑对基于D2D 的V2V 通信的物理层安全需求和干扰支出,可对V2V 通信进展优化34。V2V 通信用户的效应函数表示为针对图7 的异构网络安全评估模型和不存在基于D2D 的V2V 通信链路的系统模型的某某容量进展仿真,其中,本文只考虑路径损耗,忽略小尺度的衰落,窃听者与基站之间的距离设置为60 m,仿真结果如图8 和图9 所示。从结果可以看出,在没有基于D2D 的V2V 的通信链路状况下,随着蜂窝用户包括车载终端和移动终端用户的增加,系统的某某容量也增大。而对于图

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1