ImageVerifierCode 换一换
格式:DOCX , 页数:29 ,大小:95.47KB ,
资源ID:3786911      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3786911.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(10kv变电所及低压配电系统的设计之欧阳物创编.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

10kv变电所及低压配电系统的设计之欧阳物创编.docx

1、10kv变电所及低压配电系统的设计之欧阳物创编时间:2021.02.07命题人:欧阳物1 引言11.1.用户供电系统12 变电所负荷计算和无功补偿的计算22.1负荷情况22.1.1负荷统计全厂的用电设备统计如下表22.2变电站的负荷计算22.1.2负荷计算22.3无功补偿的目的和方案32.4无功补偿的计算及设备选择33 变电所变压器台数和容量的选择53.1变压器的选择原则53.2变压器类型的选择53.3变压器台数的选择53.4变压器容量的选择64 主接线方案的确定74.1主接线的基本要求74.1.1安全性74.1.2可靠性74.1.3灵活性74.1.4经济性74.2主接线的方案与分析74.3电

2、气主接线的确定与绘图85 短路电流的计算115.1短路电流及其计算115.2三相短路电流的计算106 变电所高压进线、一次设备和低压出线的选择146.1用电单位总计算负荷146.2高压进线的选择与校验146.2.1架空线的选择146.2.2电缆进线的选择146.3变电所一次设备的选择146.3.1高压断路器的选择146.3.2高压隔离开关的选择156.3.3高压熔断器的选择156.3.4电流互感器的选择156.3.5电压互感器的选择166.3.6高压开关柜的选择166.4低压出线的选择176.4.1低压母线桥的选择176.4.2低压母线的选择177 防雷保护与接地装置的设计187.1架空线路的

3、防雷措施187.2变配电所的防雷措施 187.3变电所公共接地装置的设计19 7.3.1 接地电阻的要求 19 7.3.2 接地装置197.4变配电所配电装置的保护208 变电所二次回路方案218.1继电保护的选择与整定218.1.1继电保护的选择要求218.1.2继电保护的装置选择与整定21结 论26谢 辞27参考文献281引 言1.1 用户供电系统电力用户供电系统由外部电源进线、用户变配电所、高低压配电线路和用电设备组成。按供电容量的不同,电力用户可分为大型(10000kVA以上)、中型(1000-10000kVA)、小型(1000kVA及以下)1.大型电力用户供电系统大型电力用户的用户供

4、电系统,采用的外部电源进线供电电压等级为35kV及以上,一般需要经用户总降压变电所和车间变电所两级变压。总降压变电所将进线电压降为6-10kV的内部高压配电电压,然后经高压配电线路引至各个车间变电所,车间变电所再将电压变为220/380V的低电压供用电设备使用。某些厂区环境和设备条件许可的大型电力用户也有采用所谓“高压深入负荷中心”的供电方式,即35kV的进线电压直接一次降为220/380V的低压配电电压。2.中型电力用户供电系统 一般采用10kV的外部电源进线供电电压,经高压配电所和10kV用户内部高压配电线路馈电给各车间变电所,车间变电所再将电压变换成220/380V的低电压供用电设备使用

5、。高压配电所通常与某个车间变电所合建。3.小型电力用户供电系统一般小型电力用户也用10kV外部电源进线电压,通常只设有一个相当于车间变电所的降压变电所,容量特别小的小型电力用户可不设变电所,采用低压220/380V直接进线。2. 变电所负荷计算和无功补偿的计算2.1 负荷情况本厂多数车间为三班制,最大负荷利用小时,除1#、2#、3#车间部分设备属二级负荷外,其它均属三级负荷。低压动力设备均为三相,额定电压为380V。电气照明设备为单相,额定电压为220V。本厂的负荷统计参见下表1-1。供电部门对功率因数的要求值:10kV供电时,。变电所位置已选定,每个车间距离变电所的距离为:1#车间:110m

6、 ; 2#车间:80m ;3#车间:100m ; 4#车间:90m 。 表1-1 车间负荷情况车间设备类别各机械组代号设备容量Pe/kVA需要系数1#动力No.11800.70.95No.2750.650.94No.3154.70.430.92No.435.20.20.5No.548.60.20.52#动力No.61820.40.9No.71560.680.88照明No.81870.490.78No.9120.360.883#动力No.101590.30.45No.111350.30.45照明No.1280.360.884#动力No.131800.30.5No.141470.30.56No.1

7、5100.360.882.2 变电站的负荷计算2.2.1 负荷计算按需要系数法计算各组负荷:有功功率 P= Kdpei (2.1)无功功率 Q=P (2.2)视在功率 S= (2.3)上述三个公式中:Pei:每组设备容量之和,单位为kW;Kd:需要用系数;:功率因数。总负荷的计算:1.有功功率 Pc=K pPc.i (2.4)2.无功功率 Qc= KqQc.i (2.5)3.视在功率 Sc= (2.6) 式中:对于干线,可取K p =0.85-0.95,Kq =0.90-0.97。对于低压母线,由用电设备计算负荷直接相加来计算时,可取K p =0.8-0.9,Kq =0.85-0.95。由干线

8、负荷直接相加来计算时,可取K p =0.9-0.95,K=0.93-0.97。2.3 无功补偿的目的和方案由于用户的大量负荷如感应电动机、电焊机、气体放电灯等,都是感性负荷,使得功率因数偏低,因此需要采用无功补偿措施来提高功率因数。电力系统要求用户的功率因数不低于0.9,按照实际情况本次设计要求功率因数为0.92以上,因此,必须采取措施提高系统功率因数。目前提高功率因数的常用的办法是装设无功自动补偿并联电容器装置。根据现场的实际情况,拟定采用低压集中补偿方式进行无功补偿。2.4 无功补偿的计算及设备选择我国供电营业规则规定:容量在100kVA及以上高压供电用户,最大负荷时的功率因数不得低于0.

9、9,如达不到上述要求,则必须进行无功功率补偿。一般情况下,由于用户的大量如:感应电动机、电焊机、电弧炉及气体放电灯等都是感性负荷,使得功率因数偏低,达不到上述要求,因此需要采用无功补偿措施来提高功率因数。当功率因数提高时,在有功功率不变的情况下,无功功率和视在功率分别减小,从而使负荷电流相应减小。这就可使供电系统的电能损耗和电压损失降低,并可选用较小容量的电力变压器、开关设备和较小截面的电线电缆,减少投资和节约有色金属。因此,提高功率因数对整个供电系统大有好处。要使功率因数提高,通常需装设人工补偿装置。最大负荷时的无功补偿容量QNC应为:QNC=PC(-) (2.7)按此公式计算出的无功补偿容

10、量为最大负荷时所需的容量,当负荷减小时,补偿容量也应相应减小,以免造成过补偿。因此,无功补偿装置通常装设无功功率自动补偿控制器,针对预先设定的功率因数目标值,根据负荷的变化相应投切电容器组数,使瞬时功率因数满足要求。提高功率因数的补偿装置有稳态无功功率补偿设备和动态无功功率补偿设备。前者主要有同步补偿机和并联电容器。动态无功功率补偿设备用于急剧变动的冲击负荷。低压无功自动补偿装置通常与低压配电屏配套制造安装,根据负荷变化相应循环投切的电容器组数一般有4、6、8、10、12组等。用上式确定了总的补偿容量后,就可根据选定的单相并联电容器容量qNC来确定电容器组数: (2.8)在用户供电系统中,无功

11、补偿装置位置一般有三种安装方式:(1)高压集中补偿 补偿效果不如后两种补偿方式,但初投资较少,便于集中运行维护,而且能对企业高压侧的无功功率进行有效补偿,以满足企业总功率因数的要求,所以在一些大中型企业中应用。(2)低压集中补偿 补偿效果较高压集中补偿方式好,特别是它能减少变压器的视在功率,从而可使主变压器的容量选的较小,因而在实际工程中应用相当普遍。(3)低压分散补偿 补偿效果最好,应优先采用。但这种补偿方式总的投资较大,且电容器组在被补偿的设备停止运用时,它也将一并被切除,因此其利用率较低。本次设计采用低压集中补偿方式。PC QC SC 取自低压母线侧的计算负荷,提高至0.92= = =0

12、.85QNC=PC(-)=619.506*tan(arccos0.85)-tan(arccos0.92)=120kvar选择BSMJ0.4-20-3型自愈式并联电容器,qNC=20kvar (2.9)=120kvar/20kvar=6 取 n=6补偿后的视在计算负荷SC=674.19kVA= =0.923. 变电所变压器台数和容量的选择3.1 变压器的选择原则电力变压器是供电系统中的关键设备,其主要功能是升压或降压以利于电能的合理输送、分配和使用,对变电所主接线的形式及其可靠性与经济性有着重要影响。所以,正确合理地选择变压器的类型、台数和容量,是对接下来主接线设计的一个主要前题。选择时必须遵照

13、有关国家规范标准,因地制宜,结合实际情况,合理选择,并应优先选用技术先进、高效节能、免维护的新产品,并优先选用技术先进的产品。3.2 变压器类型的选择电力变压器类型的选择是指确定变压器的相数、调压方式、绕组形式、绝缘及冷却方式、联结组别等。,变压器按相数分,有单相和三相两种。用户变电所一般采用三相变压器。变压器按调压方式分,有无载调压和有载调压两种。10kV配电变压器一般采用无载调压方式。变压器按绕组形式分,有双绕组变压器、三绕组变压器和自耦变压器等。用户供电系统大多采用双绕组变压器。变压器按绝缘及冷却方式分,有油浸式、干式和充气式(SF6)等。10kV配电变压器有Yyn0和Dyn11两种常见

14、联结组。由于Dyn11联结组变压器具有低压侧单相接地短路电流大,具有利于故障切除、承受单相不平衡负荷的负载能力强和高压侧三角形接线有利于抑制零序谐波电流注入电网等优点,从而在TN及TT系统接地形式的低压电网中得到越来越广泛的应用。3.3 变压器台数的选择变压器的台数一般根据负荷等级、用电容量和经济运行等条件综合考虑确定。10kV及以下变电所设计规范GB5005394中规定,当符合以下条件之一时,宜装设两台及两台以上的变压器: 有大量一级或二级负荷; 季节性负荷变化较大; 集中负荷容量较大。变电所中单台变压器(低压为0.4kV)的容量不宜大于1250kVA。当用电设备容量较大、负荷集中且运行合理

15、时,可选用较大容量的变压器。在一般情况下,动力和照明宜共用变压器。当属下列情况之一时,可设专用变压器:一、当照明负荷较大或动力和照明采用共用变压器严重影响照明质量及灯泡寿命时,可设照明专用变压器;二、单台单相负荷较大时,宜设单相变压器;三、冲击性负荷较大,严重影响电能质量时,可设冲击负荷专用变压器。四、在电源系统不接地或经阻抗接地,电气装置外露导电体就地接地系统(IT 系统)的低压电网中,照明负荷应设专用变压器。由于本单位的用电设备负荷有二级负荷和三级负荷。根据设计规范GB5005394的要求,宜装设两台变压器,选择台数为两台。3.4变压器容量的选择变压器的容量SNT首先应保证在计算负荷SC下

16、变压器能长期可靠运行。 对有两台变压器的变电所,通常采用等容量的变压器,每台容量应同时满足以下两个条件:1满足总计算负荷70%的需要,即SNT0.7 SC; (3.1)2满足全部一、二级负荷SN的需要,即SNTSC(I+II) (3.2)条件是考虑到两台变压器运行时,每台变压器各承受总计算负荷的50%,负载率约为0.7,此时变压器效率较高。而在事故情况下,一台变压器承受总计算负荷时,只过载40%,可继续运行一段时间。在此时间内,完全有可能调整生产,可切除三级负荷。条件是考虑在事故情况下,一台变压器仍能保证一、二级负荷的供电。根据无功补偿后的计算负荷,SC=674.19kVA 即SNT0.7*6

17、74.19=471.933kVA取变压器容量为500kVA因此,选择S9-500/10 Dyn11型电力变压器。为油浸式、无载调压、双绕组变压器。 表3.1 主变压器的选择额定容量SN/kVA联结组别空载损耗PO /kW短路损耗PK /kW空载电流I O %阻抗电压U K %500Dyn111.034.95344. 主接线方案的确定4.1 主接线的基本要求主接线是指由各种开关电器、电力变压器、互感器、母线、电力电缆、并联电容器等电气设备按一定次序连接的接受和分配电能的电路。它是电气设备选择及确定配电装置安装方式的依据,也是运行人员进行各种倒闸操作和事故处理的重要依据。概括地说,对一次接线的基本

18、要求包括安全、可靠、灵活和经济四个方面。4.1.1 安全性安全包括设备安全及人身安全。一次接线应符合国家标准有关技术规范的要求,正确选择电气设备及其监视、保护系统,考虑各种安全技术措施。4.1.2 可靠性不仅和一次接线的形式有关,还和电气设备的技术性能、运行管理的自动化程度因素有关。4.1.3 灵活性用最少的切换来适应各种不同的运行方式,适应负荷发展。4.1.4 经济性在满足上述技术要求的前提下,主接线方案应力求接线简化、投资省、占地少、运行费用低。采用的设备少,且应选用技术先进、经济适用的节能产品。总之,变电所通过合理的接线、紧凑的布置、简化所内附属设备,从而达到减少变电所占地面积,优化变电

19、所设计,节约材料,减少人力物力的投入,并能可靠安全的运行,避免不必要的定期检修,达到降低投资的目的。4.2主接线的方案与分析主接线的基本形式有单母线接线、双母线接线、桥式接线等多种。1单母线接线这种接线的优点是接线简单清晰、设备少、操作方便、便于扩建和采用成套配电装置;缺点:不够灵活可靠,任一元件(母线及母线隔离开关等)故障检修,均需要使整个配电装置停电,单母线可用隔离开关分段,但当一段母线故障时,全部回路仍需短时停电,在用隔离开关将故障的母线段分开后才能恢复非故障段的供电。适用范围:适应于容量较小、对供电可靠性要求不高的场合,出线回路少的小型变配电所,一般供三级负荷,两路电源进线的单母线可供

20、二级负荷。图4.1 单母线不分段主接线2单母线分段主接线当出线回路数增多且有两路电源进线时,可用断路器将母线分段,成为单母线分段接线。母线分段后,可提高供电的可靠性和灵活性。在正常工作时,分段断路器可接通也可断开运行。两路电源进线一用一备时,分段断路器接同运行,此时,任一段母线出现故障,分段断路器与故障段进线断路器都会在继电保护装置作用下自动断开,将故障段母线切除后,非故障段母线便可继续工作,而当两路电源同时工作互为备用时,分段断路器则断开运行,此时若任一电源出现故障,电源进线断路器自动断开,分段断路器可自动投入,保证给全部出线或重要负荷继续供电。 图4.2 单母线分段主接线单母线分段接线保留

21、了单母线接线的优点,又在一定程度上克服了它的缺点,如缩小了母线故障的影响范围、分别从两段母线上引出两路出线可保证对一级负荷的供电等。4.3电气主接线的确定与绘图电源进线为两路,变压器台数为两台。二次侧采用单母线分段接线。两路外供电源容量相同且可供全部负荷,采用一用一备运行方式,故变压器一次侧采用单母线接线,而二次侧采用单母线分段接线。该方案中,两路电源均设置电能计量柜,且设置在电源进线主开关之后。变电所采用直流操作电源,为监视工作电源和备用电源的电压,在母线上和备用进线断路器之前均安装有电压互感器。当工作电源停电且备用电源电压正常时,先断开工作电源进线断路器,然后接通备用电源进线断路器,由备用

22、电源供所有负荷。备用电源的投入方式采用备用电源自动投入装置APD。下表为该变电所的各用电车间负荷计算结果,如表4-3所示表4-3车间负荷计算表编号名称类别各机械组代号设 备容量Pe/kW需要系数KdcosTan 计算负荷P30/kWQ30/kvarS30/kVAI30/A1机加工动力No.11800.70.950.3312641.6132.6201.5No.2750.650.940.3648.817.651.978.8No.3154.70.430.920.4366.528.672.3109.9No.435.20.20.51.737.012.214.021.31车间No.548.60.20.51

23、.739.716.819.429.5小计-493.5-258116.6290.3441.12铸造车间动力No.61820.40.90.4872.834.980.9122.9No.71560.680.880.5410657.3120.5183.0No.81870.490.780.8091.673.3117.5178.5照明No.9120.360.880.544.32.34.97.5小计-537274.7167.8321.9489.13铆焊车间动力No.101590.30.452.047.795.4106161.1No.111350.30.452.040.58190136.7照明No.1280.3

24、60.880.542.91.63.35.0小计-302-91.1178199.3302.84电修车间动力No.131800.30.51.735493.4108164.1No.141470.30.561.4844.165.278.8119.7照明No.15100.360.880.543.61.94.16.2小计-337-101.7160.5190.9290总计(380V侧)全部线路1669.5-725.5622.91004.31525.8取,653591.8881.31339 因此最终方案是高压侧采用单母线,低压侧单母线分段,同时旁路加上与其他的变电所相连的联络线。根据各个车间的负荷情况用电气C

25、AD对其绘制主接线电路图,如图4-4所示。图4-4 某车间变电所主接线电路图5. 短路电流的计算5.1 短路电流及其计算供电系统应该正常的不间断地可靠供电,以保证生产和生活的正常进行。但是供电系统的正常运行常常因为发生短路故障而遭到破坏。所谓短路,就是供电系统中一相或多相载流导体接地或相互接触并产生超出规定值的大电流。造成短路的主要原因是电气设备载流部分的绝缘损坏、误动作、雷击或过电压击穿等。短路电流数值通常是正常工作电流值的十几倍或几十倍。当它通过电气设备时,设备的载流部分变形或损坏,选用设备时要考虑它们对短路电流的稳定。短路电流在线路上产生很大的压降,离短路点越近的母线,电压下降越厉害,从

26、而影响与母线连接的电动机或其它设备的正常运行。计算方法采用标幺值法计算。进行计算的物理量,不是用具体单位的值,而是用其相对值表示,这种计算方法叫做标幺值法。标幺值的概念是:某量的标幺值= (5.1)所谓基准值是衡量某个物理量的标准或尺度,用标幺值表示的物理量是没有单位的。供电系统中的元件包括电源、输电线路、变压器、电抗器和用户电力线路,为了求出电源至短路点电抗标幺值,需要逐一地求出这些元件的电抗标幺值。5.2三相短路电流计算电源取自距本变电所3km外的35kV变电站,用10kV双回架空线路向本变电所供电,出口处的短路容量为250MVA。 图5.1短路电流计算图 求10kV母线上K-1点短路和3

27、80V低压母线上K-2点短路电流和短路容量。电源侧短路容量定为Sk=250MVA确定基准值:取 Sd=100MVA Uc1=10.5kV Id1= =100MVA/(*10.5kV)=5.50kAZd= =(10.5kV)2/100MVA=1.10计算:1电力系统 X1*= Sd/Sk=100MVA/250MVA=0.42架空线路 X2*=X0LSd/Uc2=0.35/km*3km*=0.953电力变压器 X3*=Uk%Sd/100SNT=8求K-1点的短路电路总阻抗标幺值及三相短路电流和短路容量:1总电抗标幺值X*(k-1) =X1*+X2*=0.4+0.95=1.352三相短路电流周期分量

28、有效值Ik-1(3) = Id1/X*(k-1) =5.50kA/1.35=4.07kA3其他三相短路电流 Ik-1”(3) =Ik-1 (3) = Ik-1(3) =4.07kA ish (3) =2.55*4.07kA=10.38kA Ish(3) =1.51*4.07kA=6.15kA4三相短路容量 Sk-1(3) = Sd/X*(k-1) =100MVA/1.35=74.1 MVA求K-2点的短路电路总阻抗标幺值及三相短路电流和短路容量:两台变压器并列运行:1总电抗标幺值 X*(k-2) =X1*+X2*+X3*/ X4*=0.4+0.95+=5.352三相短路电流周期分量有效值Ik-2(3) = Id2/X*(k-2) =144.34kA/5.35=26.98kA3其他三相短路电流在10/0.4KV变压器二次侧低压母线发生三相短路时,RX,可取ksh=1.6,因此: Ik-2”(3) =Ik-2 (3) = Ik-2(3) =26.98kA ish (3) =2.26*26.98kA=60.97kA Ish(3) =1.31*26.98kA=35.34kA4三相短路容量 Sk-2(3) = Sd/X*(k-2) =100MVA/5.35=18.69 MVA两台变压器分列运行:

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1