ImageVerifierCode 换一换
格式:DOCX , 页数:47 ,大小:395.35KB ,
资源ID:3784237      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3784237.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(PCI及PRACH参数规划指导原则.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

PCI及PRACH参数规划指导原则.docx

1、PCI及PRACH参数规划指导原则PCI及PRACH参数规划指导原则(R1.1)中国电信江苏公司无线网络优化中心2014年4月2日版本信息版本日期作者审核者备注R1.02014-3-4陈德金陈德金PCI及PRACH参数规划原则初稿R1.12014-4-2陈德金陈德金由于逻辑根按照时域分配会受到周边用户上传的PUSCH干扰导致接入成功率下降,修改为时域(PrachConfigurationIndex)统一配置,用逻辑根(码域)来区分1PCI规划原则PCI(Physical Cell ID),即物理小区 ID,是 LTE 系统中终端区分不同小区的无线信号标识 (类似CDMA制式下的PN)。PCI和

2、RS的位置存在一定的映射关系,RS位置相同时在同频情况下会产生干扰。LTE的物理小区 ID(即 PCI)数量为 504 个(0503)。现实组网不可避免要对PCI进行复用,可能造成相同PCI由于复用距离过小产生冲突(PCI 冲突)。 PCI规划(物理小区ID规划)的目的就是为每个eNB小区合理分配PCI,确保同频同PCI的小区下行信号之间不会互相产生干扰,避免影响手机正确同步和解码正常服务小区的导频信道。 LTE网络中,PCI规划要结合频率、RS位置、小区关系统一考虑。1.1PCI规划原则1.1.1PCI复用现实组网不可避免要对PCI复用,在PCI规划时应当避免以下情况:(1)PCI冲突假如两

3、个相邻的小区分配相同的PCI,这种情况下会导致重叠区域中至多只有一个小区会被终端检测到,而造成初始小区搜索时只能同步到其中一个小区,而该小区不一定是最合适的,称这种情况为冲突(collision),如图1-1所示:图1-1 PCI冲突(2)PCI混淆假如一个小区的两个相邻小区具有相同的 PCI,这种情况下如果终端请求切换到ID 为A 的小区,eNB不知道哪个为目标小区。称这种情况为混淆。如图1-2所示:图1-2 PCI混淆一般一个小区的两个相邻小区具有相同PCI在网管上会被检测出来,我们要注意C网中的OneWay和TwoWay的问题。(3)PCI干扰主小区边界上可能会收到非邻区关系的其他小区信

4、号,虽然这类小区信号强度小于终端的接入电平,但对终端的接收仍然产生干扰,建议PCI规划时也要规避。1.1.2模3干扰避免模3相同即规避相邻小区的PSS序列相同和相邻小区RS信号的频域位置相同。避免模6相同即规避相邻小区RS信号的频域位置相同。在同频的情况下,两天线端口两个小区PCI模3相等,这两个小区之间的RS位置也是相同的,同样会产生较严重的干扰,导致信噪比下降。图1-3 RS位置与PCI模3及模6的关系避免邻区PCI模3相同的规划示例如图1-4:图1-4 规避模3相同规划图1.1.3模30干扰RB分配时利用正交的ZC序列,这种序列用于产生LTE终端的上行参考信号。将这些序列编为组,记为Gr

5、oup0-Group29(共30组),不同组代表不同的序列。规划时注意相邻小区不能使用相同的组,以保证终端的上行参考信号的正交性。PCI模30相同的小区间复用距离要足够远,以防出现共覆盖区的情况。 实际情况是模30相等的扇区组(基站)至少间隔1个基站。避免邻区PCI模30相同的规划示例如图1-5:图1-5 规避模30相同规划图1.2PCI分组方案PCI = (3 NID1) + NID2NID1:物理层小区识别组,范围为0到167。定义SSS序列。 NID2:在组内的识别,范围为0到2。定义PSS序列。 PCI规划延续C网的规划原则,将0503个PCI分为168组,组号为0-167,即NID1

6、,每组3个PCI,即NID2,每组的PCI为NID1*3+0、NID1*3+1和NID2*3+2。168组PCI,099组为宏站使用,100119组为滴灌使用,120167组为室分系统使用。对于3扇区以上的宏站,从滴灌组PCI中选取配置在4、5等扇区上,模3要不相邻。为了提高边界的PCI规划效果,将宏站PCI分为A、B两组各50组PCI用于边界分配。对于多地交界区域,参照集团的边界分组,将最后的27组PCI用于灵活调配,在此定义为A3(141-149)、B3(150-158)、C3(159-167)。表1-1 PCI分组规则表PCI组号PCI1PCI2PCI3覆盖类型边界覆盖组0012广覆盖边

7、界A组1345广覆盖边界A组2678广覆盖边界A组391011广覆盖边界A组4121314广覆盖边界A组5151617广覆盖边界A组6181920广覆盖边界A组7212223广覆盖边界A组8242526广覆盖边界A组9272829广覆盖边界A组10303132广覆盖边界A组11333435广覆盖边界A组12363738广覆盖边界A组13394041广覆盖边界A组14424344广覆盖边界A组15454647广覆盖边界A组16484950广覆盖边界A组17515253广覆盖边界A组18545556广覆盖边界A组19575859广覆盖边界A组20606162广覆盖边界A组21636465广覆盖边界

8、A组22666768广覆盖边界A组23697071广覆盖边界A组24727374广覆盖边界A组25757677广覆盖边界A组26787980广覆盖边界A组27818283广覆盖边界A组28848586广覆盖边界A组29878889广覆盖边界A组30909192广覆盖边界A组31939495广覆盖边界A组32969798广覆盖边界A组3399100101广覆盖边界A组34102103104广覆盖边界A组35105106107广覆盖边界A组36108109110广覆盖边界A组37111112113广覆盖边界A组38114115116广覆盖边界A组39117118119广覆盖边界A组40120121

9、122广覆盖边界A组41123124125广覆盖边界A组42126127128广覆盖边界A组43129130131广覆盖边界A组44132133134广覆盖边界A组45135136137广覆盖边界A组46138139140广覆盖边界A组47141142143广覆盖边界A组48144145146广覆盖边界A组49147148149广覆盖边界A组50150151152广覆盖边界B组51153154155广覆盖边界B组52156157158广覆盖边界B组53159160161广覆盖边界B组54162163164广覆盖边界B组55165166167广覆盖边界B组56168169170广覆盖边界B组57

10、171172173广覆盖边界B组58174175176广覆盖边界B组59177178179广覆盖边界B组60180181182广覆盖边界B组61183184185广覆盖边界B组62186187188广覆盖边界B组63189190191广覆盖边界B组64192193194广覆盖边界B组65195196197广覆盖边界B组66198199200广覆盖边界B组67201202203广覆盖边界B组68204205206广覆盖边界B组69207208209广覆盖边界B组70210211212广覆盖边界B组71213214215广覆盖边界B组72216217218广覆盖边界B组73219220221广覆盖

11、边界B组74222223224广覆盖边界B组75225226227广覆盖边界B组76228229230广覆盖边界B组77231232233广覆盖边界B组78234235236广覆盖边界B组79237238239广覆盖边界B组80240241242广覆盖边界B组81243244245广覆盖边界B组82246247248广覆盖边界B组83249250251广覆盖边界B组84252253254广覆盖边界B组85255256257广覆盖边界B组86258259260广覆盖边界B组87261262263广覆盖边界B组88264265266广覆盖边界B组89267268269广覆盖边界B组90270271

12、272广覆盖边界B组91273274275广覆盖边界B组92276277278广覆盖边界B组93279280281广覆盖边界B组94282283284广覆盖边界B组95285286287广覆盖边界B组96288289290广覆盖边界B组97291292293广覆盖边界B组98294295296广覆盖边界B组99297298299广覆盖边界B组100300301302滴灌101303304305滴灌102306307308滴灌103309310311滴灌104312313314滴灌105315316317滴灌106318319320滴灌107321322323滴灌108324325326滴灌10

13、9327328329滴灌110330331332滴灌111333334335滴灌112336337338滴灌113339340341滴灌114342343344滴灌115345346347滴灌116348349350滴灌117351352353滴灌118354355356滴灌119357358359滴灌120360361362分布系统121363364365分布系统122366367368分布系统123369370371分布系统124372373374分布系统125375376377分布系统126378379380分布系统127381382383分布系统128384385386分布系统1293

14、87388389分布系统130390391392分布系统131393394395分布系统132396397398分布系统133399400401分布系统134402403404分布系统135405406407分布系统136408409410分布系统137411412413分布系统138414415416分布系统139417418419分布系统140420421422分布系统141423424425分布系统省际A3组142426427428分布系统省际A3组143429430431分布系统省际A3组144432433434分布系统省际A3组145435436437分布系统省际A3组1464384

15、39440分布系统省际A3组147441442443分布系统省际A3组148444445446分布系统省际A3组149447448449分布系统省际A3组150450451452分布系统省际B3组151453454455分布系统省际B3组152456457458分布系统省际B3组153459460461分布系统省际B3组154462463464分布系统省际B3组155465466467分布系统省际B3组156468469470分布系统省际B3组157471472473分布系统省际B3组158474475476分布系统省际B3组159477478479分布系统省际C3组160480481482分

16、布系统省际C3组161483484485分布系统省际C3组162486487488分布系统省际C3组163489490491分布系统省际C3组164492493494分布系统省际C3组165495496497分布系统省际C3组166498499500分布系统省际C3组167501502503分布系统省际C3组1.3PCI模3规划原则为全省统一规范PCI规划,减少模3干扰问题,也避免省市边界出现模3正对问题。按集团PCI模3规划要求,第一扇区模3等于0,第二扇区模3等于1,第三扇区模3等于2。方向角和扇区编号要求:第一扇区方向角范围060,第二扇区12060,第三扇区24060。为确保避免规划模

17、3正对,一般扇区间夹角应大于90度。1.4边界PCI规划原则省际及省内边界按照边界A、B组规划(建议规划3层以上eNodeB)省间分组采用地图主体区域位置,按上北、下南、左西、右东确定,主体位置北向省的南边界PCI取A组;南向省北边界则取B组PCI。同样,左边省右向边界取A组,右边省左向边界为B组。三省交界处PCI从集团规定的省际边界分组A3、B3、C3中选取。按照此原则,安徽与江苏边界,安徽取A,江苏取B;山东与江苏边界,山东取A,江苏取B;江苏与上海边界,江苏取A,上海取B;江苏与浙江边界,江苏取A,浙江取B。江苏省内PCI的边界分组按照图1-6及表1-2规范。所有PCI在非边界区域均可复

18、用。图1-6 省际/省内边界PCI规划表1-2 边界PCI 组使用规则地市PCI边界组使用规则南京边界全部用B组,三地交界用B3组镇江边界全部用A组,三地交界用A3组常州与南京交界用A组,其它交界用B组,三地交界用C3组无锡与安徽交界用B组,其它交界用A组,三地交界用A3组苏州与浙江、上海交界用A组,其它交界用B组,三地交界用B3组南通与泰州交界用B组,其它交界用A组,三地交界用C3组泰州与镇江、无锡交界用B组,其它交界用A组(含苏州),三地交界用B3组扬州与南京交界用A组,其它交界用B组,三地交界用C3组淮安与安徽交界用B组,其它交界用A组,三地交界用B3组盐城与扬州交界用A组,其它交界用B

19、组,三地交界用A3组宿迁与连云港交界用A组,其它交界用B组,三地交界用A3组徐州与宿迁、连云港交界用A组,其它交界用B组,三地交界用B3组连云港与盐城交界用A组,其它交界用B组,三地交界用C3组2PRACH规划原则2.1PRACH理论说明每个基站下有64个preamble序列:1)由逻辑根序列号rootSequenceIndex查表3GPP TS36.211表5.7.2-4得到物理根序列号。2)用zeroCorrelationZoneConfig *prach cyclic index以及HighSpeedFlag(如果为高速,这是限制级)查3GPP TS36.211表Table5.7.2-2

20、得到循环位移Ncs;3)用循环位移Ncs与根序列,得到64个preamble序列。1个根序列可能无法产生64个preamble序列,则取下一个根序列继续生成,直到得到64个preamble。4)普通速度下(非限制集),preamble的循环位移是等间隔的,一个根序列能产生Nzc/Ncs,Nzc是长度序列长度为839(格式4为139)。高速模式下(限制集)循环位移非等间隔。高速模式下,原根序列和生成好的序列相关,峰值会出现三个,同步时需要合并三个窗口能量做估计。5)前导格式0-3,Nzc=839,对于前导格式4,Nzc=139;前导格式03共使用838个ZC序列作为前导的物理根序列,协议中根据高

21、速模式下各个物理根序列u所支持的最大的Ncs_max进行了分组,使得同一组内的Ncs满足Ncs(g)Ncs_maxNCS(g+1)(g为组号),共分为32个序列组,每组中的根序列按照CM值(CM:Cubic Metric是上行功率放大器非线性影响的衡量标准,比PAPR更准确,直接表征功放功率的降低称为功率退化的程度,CM越低,对射频硬件要求比较低)排序,位置连续的根序列CM值始终接近,可以实现一致的小区覆盖,重新排序后的根序列序号称为根序列的逻辑序号。根据CM值的大小将838个序列可以分为低CM组和高CM 组。根序列逻辑序号0455为低CM组,根序列逻辑序号456837为高CM组,CM值越低,

22、越有利于小区覆盖因此低CM值的根序列优先使用。表2-1 前导格式和距离之间的关系对应表前导格式CP长度(Ts/)GT长度()支持的多径延时小区最大覆盖半径03168/103.132976/96.886.2514.53121024/684.3815840/515.6316.6777.3426240/203.136048/196.886.2529.53321024/684.3821984/715.6316.67100.164448/14.583288/9.37551.406表2-2 前导格式0-3,帧结构类型1的随机接入配置(LTE FDD)PRACH ConfigurationIndexPrea

23、mbleFormatSystem frame numberSubframe number发送preamble的子帧号PRACH ConfigurationIndexPreambleFormatSystem frame numberSubframe number00Even1322Even110Even4332Even420Even7342Even730Any1352Any140Any4362Any450Any7372Any760Any1, 6382Any1, 670Any2 ,7392Any2 ,780Any3, 8402Any3, 890Any1, 4, 7412Any1, 4, 7100Any2, 5, 8422Any2, 5, 8110Any3, 6, 9432Any3, 6, 9120Any0, 2, 4, 6, 8442Any0, 2, 4, 6, 8130Any1, 3, 5, 7, 9452Any1, 3, 5, 7, 9140Any0, 1, 2, 3, 4, 5, 6, 7, 8, 946N/AN/AN/A150Even9472Even9161Even1483Even1171Even4493Even4181Even7

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1