ImageVerifierCode 换一换
格式:DOCX , 页数:9 ,大小:359.33KB ,
资源ID:3714400      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3714400.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(钢在加热及冷却时的组织转变.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

钢在加热及冷却时的组织转变.docx

1、钢在加热及冷却时的组织转变一、钢在加热时的组织转变1 .钢在加热和冷却时的相变温度钢在固态下进行加热、保温和冷却时将发生组织转变,转变临界点根据 Fe-FesC相图确定。平衡状态下:当钢在缓慢加热或冷却时,其固态下的临界点分别用 Fe-FesC相图中的平衡线A(PSK线)、A(GS线)、AES线)表示。实际加热和冷却时:发生组织转变的临界点都要偏离平衡临界点,并且加热和冷 却速度越快,其偏离的程度越大。实际加热时 临界点分别用 Ad、Aq、As表示实际冷却时 临界点分别用 Ari、Ar3、As表示钢热处理加热的目的是获得部分或全部奥氏体, 组织向奥氏体转变的过程称奥氏体化。加热至Aci以上时:

2、首先由珠光体转变成奥氏体(P - A);加热至Acs以上时:亚共析钢中的铁素体将转变为奥体(F A);加热至As以上时:过共析钢中的二次渗碳体将转变成奥氏体( FaC A)十塚尤邯I十樓碳体 I珠光体庶 C (%)-2 奥氏体的形成钢在加热时的组织转变,主要包括奥氏体的形成和晶粒长大两个过程形核 长大 残余渗碳体溶解 均匀化共析钢奥氏体化:热处理加热至Ac1以上时,将全部奥氏体化亚共析钢奥氏体化:原始组织为F+P,加热至Ac1以上时,P先奥氏体化,组织 部分奥氏体化;加热至Ac3以上时,F奥氏体化,组织全部奥氏体化过共析钢奥氏体化:原始组织为P+Fe3C,加热至Ac1以上时,P先奥氏体化, 组

3、织部分奥氏体化;加热至 Acm以上时,Fe3C奥氏体化,组织全部奥氏体化2、奥氏体的晶粒大小奥氏体晶粒对性能影响:奥氏体的晶粒越细小、均匀,冷却后的室温组织越细密, 其强度、塑性和韧性比较高。奥氏体的晶粒度:晶粒度是指多晶体内晶粒的大小,可以用晶粒号、晶粒平均 直径、单位面积或单位体积内晶粒的数目来表示。 GB/T8493-1987将奥氏体晶粒分为 8个等级,其中14级为粗晶粒;58级为细晶粒。本质粗晶粒钢:热处理时随加热温度的升高,奥氏体晶粒迅速长大的钢。本质细晶粒钢:热处理时随加热温度的升高,奥氏体晶粒不易长大的钢。一般 完全脱氧的镇静钢、含碳化物元素和氮化物元素的合金钢为本质细晶粒钢。3

4、、影响奥氏体晶粒大小的主要因素热处理工艺参数:加热速度、加热温度、保温时间,其中加热温度对奥氏体 晶粒大小的影响最为显著。钢的化学成分:大多数合金元素(锰和磷除外)均能不同程度地阻止奥氏体晶粒 的长大,特别是与碳结合能力较强的碳化物形成元素(如铬、钼、钨、钒等)及氮化物元素(如铌、钒、钛等),会形成难熔的碳化物和氮化物颗粒,弥散分布于奥氏体 晶界上,阻碍奥氏体晶粒的长大。因此,大多数合金钢、本质细晶粒钢加热时奥氏体 的晶粒一般较细。原始组织:钢的原始晶粒越细,热处理加热后的奥氏体的晶粒越细。二、钢在冷却时的组织转变冷却方式是决定热处理组织和性能的主要因素。 热处理冷却方式分为等温冷却和 连续冷

5、却。奥氏体冷却降至Ai以下时(A以下温度存在的不稳定奥氏体称过冷奥氏体)将发生组织转变。热处理中采用不同的冷却方式,过冷奥氏体将转变为不同组织,性能具有很大的差异,如下表为45钢奥氏体化后经不同方式的冷却,其性能的差异。45钢经840C加热在不同条件冷却后的力学性能冷却方法抗拉强度/MPa屈服点/MPa断后伸长率/ %断面收缩率/ %硬度/HRC随炉冷却53028032.549.315 18空气中冷却67072034015 1845 5018 24油中冷却90062018 204840 50水中冷却11007207812 1452 601 奥氏体的等温转变奥氏体在A1线以上是稳定相,当冷却到

6、A1线以下而又尚未转变的奥氏体称为 过冷奥氏体。这是一种不稳定的过冷组织,只要经过一段时间的等温保持,它就可以 等温转变为稳定的新相。这种转变就称为奥氏体的等温转变。等温冷却转变:钢经奥氏体化后,迅速冷至临界点(Ari或A线以下,等温保 持时过冷奥氏体发生的转变。等温转变曲线:可综合反映过冷奥氏体在不同过冷度下等温温度、保持时间 与转变产物所占的百分数(转变开始及转变终止)的关系曲线,称“ TTT图”, T time,T temperature,T 1ransformation ”,又称为 “C 曲线”。i ioioio3io1 io5z/s共析钢等温转变曲线图等温转变产物及性能:用等温转变图

7、可分析钢在 Ai线以下不同温度进行等温转变 所获的产物。根据等温温度不同,其转变产物有珠光体型和贝氏体型两种。高温转变:转变温度范围为A550C,获片状珠光体型(F+F)组织。依转变温度由高到低,转变产物分别为珠光体、索氏体、托氏体,片层间距由粗 到细。其力学性能与片层间距大小有关,片层间距越小,贝U塑性变形抗力越大,强度 和硬度越高,塑性也有所改善。中温转变:转变温度范围为550CMS,此温度下转变获贝氏体型组织,贝氏 体型组织是由过饱和的铁素体和碳化物组成的,分上贝氏体和下贝氏体。550350C范围内形成的贝氏体称为上贝氏体,金相组织呈羽毛状;350MS范围内形成的贝氏体称为下贝氏体, 金

8、相组织呈黑色针状或片状,下贝 氏体组织通常具有优良的综合力学性能,即强度和韧性都较高。等温转变温度一一组织一一性能变化规律: 等温转变温度越低,其转变组织越细小,强度、硬度也越高,见下表。转变转变温符号显微组织特征硬度HRC类型度/C转变产物Aci 650珠光体P粗片状铁素体与渗碳体混合物25高温转变650600索氏体S600倍光学金相显微镜下才能分辨的细片状珠光体25 35600550托氏体T在光学金相显微镜下已无法分辨的极细片状珠光体35 40中温550350上贝氏体B上羽毛状组织40 45转变350 Ms下贝氏体B下黑色针状或称竹叶状组织45 55低温转变:碳在a -Fe中的过饱和固溶体

9、称为马氏体,用符号“ M表示。在M线以下过冷奥氏体发生的转变称马氏体转变,马氏体转变通常在连续冷却时进行, 是一种低温转变。马氏体组织形貌:低碳马氏体组织通常呈板条状 M高碳马氏体组织通常呈针 叶状M马氏体性能:马氏体的强度和硬度主要取决于马氏体的含碳量。随着马氏体含 碳量的提高,其强度与硬度也随之提高。低碳马氏体具有良好的强度及一定的韧性; 高碳马氏体硬度高、脆性大。马氏体转变特点:(1) 马氏体转变是在一个温度范围内(MS M)连续冷却完成的,马氏体点 M 和M主要与奥氏体的含碳量有关。(2) 马氏体转变具有不完全性。如果把奥氏体过冷到室温不能得到全部马氏体, 而保留一定量的奥氏体,这种在

10、冷却过程中发生相变后仍在环境温度下存在的奥氏体 称残余奥氏体。残余奥氏体不仅降低钢件的硬度和耐磨性, 而且影响钢件的尺寸稳定 性,要使残余奥氏体继续向马氏体转变, 就要将淬火钢继续冷却至室温以下 (如冰柜 冷可却至0C以下;干冰+洒精可冷却至-78 C ;液氮可冷却至-183C),这种处理 方法叫做冷处理。对于如精密刀具、精密量具、精密轴承、精密丝杆等一些尺寸要求高的工件均应在淬火后进行冷处理。(3) 马氏体转变的速度极快,属非扩散型相变,一般不需要孕育期。(4) 马氏体转变会引起钢的体积膨胀。 由于马氏体的比容比奥氏体大, 通常又 是在较大的冷却速度下发生转变,钢件内外温差大,所以会产生很大

11、的内应力,这是 导致淬火钢出现变形和开裂的主要原因,应引起足够的重视。2 奥氏体的连续冷却转变连续冷却转变:过冷奥氏体在一个温度范围内,随温度下降发生组织转变,同样可用“连续冷却转变曲线”“ CCT曲线,C continuous ; C cooling ; T transformation ”分析组织转变过程和产物。共析钢的“ CCT曲线”测量过程示意图 如下图。图中V (炉冷)、V2 (空冷)、V3 (油冷)、V4 (水冷)代表热处理中四种 常用的连续冷却方式。m7G0EJO5UOufc 4003002000炉冷Vi:比较缓慢,相当于随炉冷却(退火的冷却方式),它分别与 C曲线的 转变开始和

12、转变终了线相交于1、2点,这两点位于C曲线上部珠光体转变区域,估 计它的转变产物为 珠光体,硬度170220HBS空冷匕:相当于在空气中冷却(正火的冷却方式),它分别与 C曲线的转变开始线和转变终了线相交于3、4点,位于C曲线珠光体转变区域中下部分,故可判断其转变产物为索氏体,硬度2535HRC油冷V3:相当于在油中的冷却(在油中淬火的冷却方式),与 C曲线的转变开 始线交于5、6点,没有与转变终了线相交,所以仅有一部分过冷奥氏体转变为托氏 体,其余部分在冷却至M线以下转变为马氏体组织。因此,转变产物应是 托氏体和 马氏体的混合组织,硬度4555HRC水冷V4:相当于在水中冷却(在水中淬火的冷却方式),它不与 C曲线相交, 过冷奥氏体将直接冷却至 M以下进行马氏体转变。最后得到马氏体和残余奥氏体组 织,硬度5565HRC马氏体临界冷却速:图中冷却速度Vk与C曲线的开始转变线相切,这是过冷 奥氏体不发生分解,全部过冷到 M线以下向马氏体转变所需要的最小冷却速度。等温转变“TTT曲线”在连续冷却转变中的应用: 由于连续冷却“ CCT转变曲线”的测定较为困难,而连续冷却转变可以看作由许多温度相差很小的等温转变过程 所组成的,所以连续冷却转变得到的组织可认为是不同温度下等温转变产物的混合 物。故生产中常用TTT曲线(C曲线)近似地分析连续冷却过程。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1