ImageVerifierCode 换一换
格式:DOCX , 页数:36 ,大小:887.26KB ,
资源ID:364389      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/364389.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(第一章功率半导体器件.docx)为本站会员(b****2)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

第一章功率半导体器件.docx

1、第一章功率半导体器件第一章功率半导体器件1.1 概述1.1.1功率半导体器件的定义图1-1为电力电子装置的示意图, 输入电功率经功率变换器变换后输出至负载。 功率变换器即为通常所说的电力电子电路(也称主电路) ,它由电力电子器件构成。目前,除了在大功率高频微波电路中仍使用真空管 (电真空器件)夕卜,其余的电力电子电路均由功率半导体器件组成。图1-1电力电子装置示意图在截止状态时能承受高电在开关转换时,具有短的di/dt和du/dt以及具一个理想的功率半导体器件、应该具有好的静态和动态特性, 压且漏电流要小;在导通状态时,能流过大电流和很低的管压降; 开、关时间;通态损耗、断态损耗和开关损耗均要

2、小。同时能承受高的 有全控功能。1.1.2 功率半导体器件的发展功率半导体器件是电力电子技术的基础,也是电力电子技术发展的“龙头” 。从1958年美国通用电气公司研制出世界上第一个工业用普通晶闸管开始, 电能的变换和控制从旋转的变流机组和静止的离子变流器进入由功率半导体器件构成的变流器时代。 功率半导体器件的发展经历了以下阶段:大功率二极管产生于 20世纪40年代,是功率半导体器件中结构最简单、 使用最广泛的一种器件。目前已形成整流二极管( Rectifier Diode )、快恢复二极管(Fast Recovery DiodeFRD )和肖特基二极管(Schottky Barrier Dio

3、de SBD)等3种主要类型。晶闸管(Thyristor, or Silico n Con trolled Rectifier SCR )可以算作是第一代电力电子器 件,它的出现使电力电子技术发生了根本性的变化。但它是一种无自关断能力的半控器件, 应用中必须考虑关断方式问题, 电路结构上必须设置关断 (换流)电路,大大复杂了电路结构、增加了成本、限制了在频率较高的电力电子电路中的应用。 此外晶闸管的开关频率也不高,难于实现变流装置的高频化。晶闸管的派生器件有逆导晶闸管、双向晶闸管、 光控晶闸管等。20世纪70年代出现了称之为第二代的自关断器件, 如门极可关断晶闸管(Gate-Turn-Off

4、Thyristor GTO),大功率双极型晶体管 (Bipolar Jun ction Tran sistor BJT, or Gia nt Tran sistor GTR),功率场效应管(Power Metal Oxide Semiconductor Field Effect Transistor Power MOSFET )等。20世纪80年代出现了以绝缘栅极双极型晶体管 (Insulated-gate Bipolar Transistor IGBT,or IGT )为代表的第三代复合导电机构的场控半导体器件。20世纪80年代后期,功率半导体器件的发展趋势为模块化、集成化,按照电力电子电

5、路的各种拓朴结构,将多个相同的功率半导体器件或不同的功率半导体器件封装在一个模块 中,这样可缩小器件体积、降低成本、提高可靠性。值得指出的是新的一代器件的出现并不意味着老的器件被淘汰,世界上 SCR产量仍占全部功率半导体器件总数的一半,是目前高压、大电流装置中不可替代的元件。1.1.3 功率半导体器件的分类功率半导体器件可按可控性、驱动信号类型来进行分类。1.按可控性分类根据能被驱动(触发)电路输出控制信号所控制的程度, 可将功率半导体器件分为不控型器件、半控型器件、全控型器件等 3种。(1)不控型器件不能用控制信号来控制开通、关断的功率半导体器件。(2)半控型器件能利用控制信号控制其导通,但

6、不能控制其关断的功率半导体器件称为半控型器件。(3)全控型器件能利用控制信号控制其导通,也能控制其关断的功率半导体器件称为全控型器件, 通常也称为自关断器件。2.按驱动信号类型分类(1)电流驱动型通过在控制端注入或抽出电流来实现开通或关断的器件称为电流驱动型功率半导体器 件。GTO、GTR为电流驱动型功率半导体器件。(2)电压驱动型通过在控制端和另一公共得端加入一定的电压信号来实现开通或关断的器件称为电压驱动型功率半导体器件。P-MOSFET、IGBT为电压驱动型功率半导体器件。1.2大功率二极管1.2.1大功率二极管的结构大功率二极管的内部结构是一个具有P型及N型两层半导体、一个 PN结和阳

7、极A、阴极K的两层两端半导体器件,其符号表示如图 1-2a)所示。式 图1-2 大功率二极管从外部构成看,也分成管芯和散热器两部分。这是由于二极管工作时管芯中要通过强大 的电流,而PN结又有一定的正向电阻,管芯要因损耗而发热。为了管芯的冷却,必须配备 散热器。一般情况下,200A以下的管芯采用螺旋式 (图1-2b),200A以上则采用平板式(图1-2c)。1.2.2大功率二极管的特性1.大功率二极管的伏安特性二极管阳极和阴极间的电压 Uak与阳极电流ia间的关系称为伏安特性,如图 1-3所示。 第I象限为正向特性区, 表现为正向导通状态。 第川象限为反向特性区, 表现为反向阻断状 态。a)实际

8、特性 b )理想特性图1-3大功率二极管的伏安特性2 大功率二极管的开通、关断特性大功率二极管具有延迟导通和延迟关断的特征, 关断时会出现瞬时反向电流和瞬时反向过电压。(1)大功率二极管的开通过程大功率二极管的开通需一定的过程, 初期出现较高的瞬态压降, 过一段时间后才达到稳定,且导通压降很小。图 1-4为大功率二极管开通过程中的管压降 UD和正向电流iD的变化曲线。由图可见,在正向恢复时间 tfr内,正在开通的大功率二极管上承受的峰值电压 UDM比稳态管压降高的多,在有些二极管中的峰值电压可达几十伏。(2)大功率二极管的关断过程图1-5为大功率二极管关断过程电压、电流波形。大功率二极管应用在

9、低频整流电路时可不考虑其动态过程, 但在高频逆变器、高频整流器、缓冲电路等频率较高的电力电子电路中就要考虑大功率二极管的开通、 关断等动态过程。1.2.3大功率二极管的主要参数1、 额定正向平均电流(额定电流) If指在规定+ 40 C的环境温度和标准散热条件下, 元件结温达额定且稳定时, 容许长时间 连续流过工频正弦半波电流的平均值。 将此电流整化到等于或小于规定的电流等级, 则为该二极管的额定电流。 在选用大功率二极管时, 应按元件允许通过的电流有效值来选取。 对应额定电流If的有效值为1.571产2、 反向重复峰值电压(额定电压) U RRM在额定结温条件下,元件反向伏安特性曲线(第川象

10、限)急剧拐弯处于所对应的反向峰 值电压称为反向不重复峰值电压 U rsm。反向不重复峰值电压值的 80%称为反向重复峰值电 压U RRM。再将U RRM整化到等于或小于该值的电压等级,即为兀件的额定电压。3、 反向漏电流Irr对应于反向重复峰值电压 U RRM下的平均漏电流称为反向重复平均电流 I RR。4、 正向平均电压 Uf在规定的+ 40 C环境温度和标准的散热条件下, 元件通以工频正弦半波额定正向平均电流时,元件阳、阴极间电压的平均值,有时亦称为管压降。元件发热与损耗与 U f有关,一般应选用管压降小的元件以降低元件的导通损耗。5、 大功率二极管的型号普通型大功率二极管型号用 ZP表示

11、,其中Z代表整流特性,P为普通型。普通型大功率二极管型号可表示如下ZP电流等级电压等级/100通态平均电压组别如型号为ZP50 16的大功率二极管表示:普通型大功率二极管,额定电流为 50A,额定电压为1600V。1.3 晶闸管(SCR)1.3.1晶闸管的结构从总体结构上看,可区分为管芯及散热器两大部分,晶闸管是大功率的半导体器件, 别如图1-6及图1-7所示。c)符号图1-6晶闸管管芯及电路符号表示管芯是晶闸管的本体部分,由半导体材料构成,具有三个与外电路可以连接的电极:极A,阴极K和门极(或称控制极)G,其电路图中符号表示如图 1-6c)所示。散热器则是为了将管芯在工作时由损耗产生的热量带

12、走而设置的冷却器。 按照晶闸管管芯与散热器间的安装方式,晶闸管可分为螺栓型与平板型两种。螺栓型(图 1-6a)依靠螺栓将管芯与散热器紧密连接在一起,并靠相互接触的一个面传递热量。c)水冷图1-7晶闸管的散热器晶闸管管芯的内部结构如图 1-3所示,是一个四层(Pi Ni P2 N2)二端(A、K、G)的功率半导体器件。它是在 N型的硅基片(Ni)的两边扩散P型半导体杂质层( Pi、P2),形成了两个PN结J2。再在P2层内扩散N型半导体杂质层 N2又形成另一个PN结J30然 后在相应位置放置钼片作电极,引出阳极 A,阴极K及门极G,形成了一个四层三端的大功率电子元件。这个四层半导体器件由于有三个

13、 PN结的存在,决定了它的可控导通特性。1.3.2晶闸管的工作原理通过理论分析和实验验证表明:1) 只有当晶闸管同时承受正向阳极电压和正向门极电压时晶闸管才能导通, 两者不可 缺一。2) 晶闸管一旦导通后门极将失去控制作用, 门极电压对管子随后的导通或关断均不起作用,故使晶闸管导通的门极电压不必是一个持续的直流电压, 只要是一个具有一定宽度的正向脉冲电压即可,脉冲的宽度与晶闸管的开通特性及负载性质有关。 这个脉冲常称之为触发脉冲。3) 要使已导通的晶闸管关断,必须使阳极电流降低到某一数值之下(约几十毫安) 。这可以通过增大负载电阻, 降低阳极电压至接近于零或施加反向阳极电压来实现。 这个能保持

14、晶闸管导通的最小电流称为维持电流,是晶闸管的一个重要参数。晶闸管为什么会有以上导通和关断的特性, 这与晶闸管内部发生的物理过程有关。 晶闸 管是一个具有Pi N1 P2N2四层半导体的器件,内部形成有三个 PN结J-| J2、J3,晶闸 管承受正向阳极电压时,其中 Ji、J3承受反向阻断电压,J2承受正向阻断电压。这三个 PN 结的功能可以看作是一个 PNP型三极管(Pi Ni P2)和一个NPN型三极管VT2 ( Ni P2 N2)构成的复合作用,如图 i-9所示。图i-9晶闸管的等效复合三极管效应可以看出,两个晶体管连接的特点是一个晶体管的集电极电流就是另一个晶体管的基极 电流,当有足够的

15、门极电流 Ig流入时,两个相互复合的晶体管电路就会形成强烈的正反馈, 导致两个晶体管饱和导通,也即晶闸管的导通。如果晶闸管承受的是反向阳极电压,由于等效晶体管 VTi、VT2均处于反压状态,无论有无门极电流Ig,晶闸管都不能导通。1.3.3晶闸管的基本特性1.静态特性静态特性又称伏安特性, 指的是器件端电压与电流的关系。 这里介绍阳极伏安特性和门极伏安特性。(1)阳极伏安特性晶闸管的阳极伏安特性表示晶闸管阳极与阴极之间的电压 Uak与阳极电流ia之间的关系曲线,如图1-10所示。正向阻断高阻区;负阻区;正向导通低阻区;反向阻断高阻区阳极伏安特性可以划分为两个区域:第I象限为正向特性区,第川象限为反向特性区。 第I象限的正向特性又可分为正向阻断状态及正向导通状态。(2)门极伏安特性晶闸管的门极与阴极间存在着一个 PN结J3,门极伏安特性就是指这个 PN结上正向门极电压Ug与门极电流lg间的关系。由于这个结的伏安特性很分散,无法找到一条典型的代 表曲线,只能用一条极限高阻门极特性和一条极限低阻门极

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1