ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:262.96KB ,
资源ID:3626780      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3626780.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(用HeNe激光器进行激光基础问题实验研究.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

用HeNe激光器进行激光基础问题实验研究.docx

1、用HeNe激光器进行激光基础问题实验研究用He-Ne激光器进行激光基础问题实验研究学生:韩飞 指导老师:卫栋摘要:用外腔氦氖激光器和F-P干涉仪,研究了:腔稳定性,纵模和横模,自由光谱范围和模式扫描,并且通过腔内插入标准具的方法实现了激光器的单模运转。本文讨论一些初等方法,实验过程和取得的成果。关键词:腔稳定性、纵横向模式、自由光谱范围、模式扫描Investigation of laser fundamentals using a heliumneon laserAbstract: Using an open-frame heliumneon (HeNe) laser and optical

2、spectrum analyser, we performed several upper-division laboratory experiments investigating important concepts regarding laser fundamentals. Such experiments include cavity stability (mirror geometry and thermal effects), longitudinal and transverse modes, free spectral range, and mode sweeping. In

3、this paper we discuss, in an elementary way, the experimental procedures and results obtained.一.引言激光是在1960年正式问世的。但是,激光的历史却已有100多年。确切地说,远在1893年,在波尔多一所中学任教的物理教师布卢什就已经指出,两面靠近的平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。 1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。量子力学的建立和发展使人们对物质的微观结构及运动规律有了更深入的认

4、识,这也在客观上更加完善了爱因斯坦的受激辐射理论,为激光器的产生进一步奠定了理论基础。20世纪40年代末,量子电子学诞生后,很快应用于研究电磁辐射与各种微观粒子系统的相互作用,并研制出许多相应的器件。这些科学理论和技术的快速发展都为激光器的发明创造了条件。 1951年,美国物理学家珀塞尔和庞德在实验中成功地造成了粒子数反转,并获得了每秒50千赫的受激辐射。稍后,美国物理学家查尔斯汤斯以及苏联物理学家马索夫和普罗霍洛夫先后提出了利用原子和分子的受激辐射原理来产生和放大微波的设计。 1954年,前面提到的美国物理学家汤斯终于制成了第一台氨分子束微波激射器,成功地开创了利用分子和原子体系作为微波辐射

5、相干放大器或振荡器的先例。 汤斯等人研制的微波激射器只产生了1.25厘米波长的微波,功率很小。生产和科技不断发展的需要推动科学家们去探索新的发光机理,以产生新的性能优异的光源。1958年,汤斯与姐夫阿瑟肖洛将微波激射器与光学、光谱学的理论知识结合起来,提出了采用开式谐振腔的关键性建议,并预言了激光的相干性、方向性、线宽和噪音等性质。同期,巴索夫和普罗霍洛夫等人也提出了实现受激辐射光放大的原理性方案。 1960年,美国物理学家西奥多梅曼在佛罗里达州迈阿密的研究实验室里,赢得了这场世界范围内激光器的研制竞赛。他用一个高强闪光灯管来刺激在红宝石水晶里的铬原子,从而产生一条相当集中的纤细红色光柱,当它

6、射向某一点时,可使这一点达到比太阳还高的温度。“梅曼设计”引起了科学界的震惊和怀疑,因为科学家们一直在注视和期待着的是氦氖激光器。 1960年12月,出生于伊朗的美国科学家贾万率人终于成功地制造并运转了全世界第一台气体激光器氦氖激光器。1962年,有三组科学家几乎同时发明了半导体激光器。1966年,科学家们又研制成了波长可在一段范围内连续调节的有机染料激光器。此外,还有输出能量大、功率高,而且不依赖电网的化学激光器等纷纷问世。 从60年代到今天,已研制了上百种激光器。按工作物质可以将它们划分为:固体激光器、气体激光器、半导体激光器等。目前固体激光器领域最活跃的话题是二极管泵浦固体激光器,相应的

7、半导体激光器中激光二极管成为了它的重要发展方向,气体激光器中以CO2激光器的研究最成熟也发展最快。 本论文的目的用外腔氦氖激光器和F-P干涉仪,研究:腔稳定性,纵横向模式,自由光谱范围和模式扫描,并且通过腔内插入标准具的方法实现了激光器的单模运转。2氦氖激光器气体激光器是以气体或蒸气为工作物质的激光器。由于气态工作物质的光学均匀性远比固体好,所以气体激光器易于获得衍射极限的高斯光束,方向性好。气体工作物质的谱线宽度远比固体小,因而激光的单色性好。但由于气体的激活粒子密度较固体为小,需要较大体积的工作物质才能获得足够的功率输出,因而气体激光器的体积一般比较庞大。 He-Ne激光器是最早研制成功的

8、气体激光器。在可见及红外波段可产生多条激光谱线,其中最强的是632.8nm、1.15um和3.39um三条谱线。放电管长数十厘米的He-Ne激光器输出功率为毫瓦量级,放电管长(1至2)m的激光器输出功率可达数十毫瓦。由于他能输出优质的连续运转可见光,而且具有结构简单、体积较小、价格低廉等优点,在准直、定位、全息照相、测量、精密计量等方面得到了广泛应用。 图1是Ne原子和He原子能级示意图。632.8nm、1.15um及3.39um激光谱线分别对应Ne的,跃进。下面以632.8nm激光为例说明其激励机制。 图1.Ne原子和He原子能级示意图 在一定的放电条件下,阴极发射的电子向阳极运动并被电场加

9、速,快速电子与基态He原子发生非弹性碰撞时将He原子激发到激发态而自身减速。是亚稳态,因而可积聚大量He原子。当激发态He原子和基态Ne原子发生非弹性碰撞时将Ne原子激发到能级。这一过程称作共振能量转移,可表示为 共振能量转移碰撞截面随对应激发态能量差E的减少而急剧增加。由于He原子的和Ne原子的能级十分接近,因而具有很大的共振能量转移截面。而激光跃进的下能级上的Ne原子仅仅来源于电子碰撞激发和高能级的串级激发,其寿命(100ns)低一个能级,所以在Ne原子的和能级间很容易建立集居数反转状态并实现连续激光运转。 在氦氖激光器中,其主要作用的是多普勒加宽,制作输出为单纵模的氦氖激光器有许多方法,

10、其中一种是增高充气气压,使碰撞增宽大于多普勒增宽,以使增益线型将是均匀增宽线型。对于在均匀增宽条件下工作的激光器,由于模的竞争,一般最终将只剩下单一纵模的振荡。这是以牺牲最佳配气条件为代价的,其输出功率将比最佳配气条件下的小的多;另一种方法是缩短激光管的腔长,如缩到10cm时,由于纵模间隔将达到1500MHz,在Ne原子的增益线宽(多普勒线宽)范围内,将只有一个纵模形成振荡,从而可获得单纵模的激光输出。但这种激光器腔长较短,输出功率较低,因而限制了它的应用范围。为了制造有相当功率输出的单纵模激光器,一种行之有效的方法是对长腔多纵模激光器进行选模,改变纵模激光器为单纵模激光器。三 实验装置与实验

11、内容本论文主要以氦氖激光器为基础,研究激光器的稳定性条件,纵横模模式,以及通过在腔内插入标准具的方法来实现激光器的单纵模运转。外腔氦氖激光器结构如图2所示。氦氖激光器放电管长度约为110cm,两端是布儒斯特窗口,这样可以使输出的激光为线偏振光,中心毛细管的直径约为2mm。激光管的两个腔镜中,一个是曲率半径为3米的凹透镜,一个为平面镜(反射率99),激光从平面镜输出。激光器的最佳工作电流是16mA。两个腔镜之间的初始距离,即腔长在134厘米左右,平面镜的位置可以移动,以此来改变激光器的腔长。图2. 外腔氦氖激光器结构示意图在实验中,首先要调节激光器使其产生激光,我们的调节方法是这样的:先去掉两个

12、腔镜,然后用另外一束氦氖激光(图中未画出)进行准直,使其穿过毛细管。由于毛细管很细,如果准直不好,准直光会在毛细管壁上产生多次反射,穿过毛细管后会在远处产生较大的圆环光斑;当准直好后,则在远处的光斑仍为一个较小的园斑。准直好后,然后在加腔镜。我们先加上凹面镜,让凹面镜反射的光沿原路返回,然后再加上平面镜,让从平面镜反射的光也沿原路返回,这时候,如果准直的好,会看到准直光束在激光腔中能够产生振荡。去掉准直光,打开激光器的电流,就可以看到外腔激光器可以输出激光。3.1 腔稳定条件 首先探讨腔的长度,腔镜的曲率半径与激光谐振腔稳定性的关系。根据系统使用哪个输出镜,可以求出激光腔长度(即确定稳定和不稳

13、定的地区)的要求,需要使用的G-参数。 (1)其中L为两个腔镜之间的长度,R1,2分别是腔镜1和2的曲率半径。方程(1)是一个光学矩阵分析简约形式,推导出了这样一种满意方式,光线从光轴位附近出发,经过反射仍然在谐振器。如果公式(1)不满足,那么光线的传播是有限的,它会最终传出镜和谐振器。虽然可在几个文本发现详细的推导公式(1),但一个稳定区域的图形更方便表示,如图3所示。请注意,如果该G参数产品的模腔尺寸在交叉影线区域,那么腔是稳定的;如在外面,那么它是不稳定的,如果在边界上,它是有条件稳定的。该图表示各类G1和G2产品镜子配置的例子。通过移动输出镜而改变腔长,每改变一次并要测其的输出功率,这

14、里的输出功率要求调试激光器使其最大。 图3.谐振腔的稳定性图 通过公式(1)可知腔长在0mL3m是稳定区间,在L3m是非稳定区间。我们通过改变腔长来研究激光器的稳定性,腔长L与输出功率的关系如图4所示。随着腔长的增加,激光器输出功率逐渐下降,当腔长为204cm时,激光器输出功率为2mW。再增加腔长,激光器将不能振荡,这可能是由于系统损耗太大的缘故,在稳定区范围内,就不能振荡了。 图4.腔长改变量与输出功率的关系3.2 纵向和横向模式 在这个实验中,我们利用FP干涉仪对氦氖激光器的纵模进行研究。我们知道,一个光场要能在谐振腔内形成稳定的振荡,该场会沿腔的轴线方向(纵向)形成驻波,驻波的波节数由q

15、决定。q通常是一个很大的数。通过将由整数q所表征的腔内纵向场分布称为腔的纵模。不同的q值相应于不同的纵模。在这里所讨论的简化模型中,纵模q单值地决定模的谐振频率。腔的相邻两个纵模的频率之差称为纵模间隔。纵模间隔,其中是真空中的光速,是腔的光学长度。对于氦氖激光器而言,增益宽度约为1500MHz。由于激光器的腔长较长,因此两个纵模之间的间隔较小,会有多个纵模落在增益范围之内,激光器是多模振荡。图5是我们扫描FP腔得到的透射谱,可以看到大约有15个纵模能够形成稳定的振荡,这些纵模的轮廓线是高斯线型。我们使用的FP腔的自由光谱区为2.5GHz,如图中红线所示,图中蓝色箭头之间表示的是纵模间隔,可以算

16、出,相邻的纵模间隔大约为125MHz。对于这种情况,我们对腔长进行测量,约为134厘米,由理论可以算出纵模间隔为112MHz,误差在实验值的10。产生误差的原因一是由于我们测量的腔长是一个几何长度,而实际的腔长应该是一个光学长度,另一个就是测量产生的误差。图5. TEM00模在频谱分析仪将在示波器上产生的图像 除了纵向模式,我们也研究了激光横模。通过稍微调整输出镜倾斜程度,可以获得透射的不同横模,在实验中,我们只观察到了模。 氦氖激光腔的热稳定性和模式扫描的现象,也可以通过打开激光预热约一分钟,同时对频谱分析仪进行校准。一旦重新打开激光,激光管开始扩散热。在这段时间内,纵向模式可观察到通过扩大

17、传播线路中心,。一旦达到热平衡和激光管的长度已达到了平衡,结构趋于稳定的模式。最后,关于极化更多的试验,空间相干,高斯光束,和散斑影响也与此系统进行调查。3.3 He-Ne单纵模激光器的实现方法 为了实现激光器单模运转,我们进行了选频实验。常用的选频方法有腔内插入标准具选频和短腔法选频。法珀标准具插入腔内选模原理如图6所示图6. 法珀标准具法选模示意图设法珀标准具厚度为L,折射为n,其法线与光路夹角为,则只有频率Vm满足: Vm=mc/2nLcos (2) 的光,对法珀标准具有极高的透过率。(2)式中的m是正整数。法珀标准具透过率的线宽则决定于其细度。可选用L足够小的法珀标准具,使其自由光谱区

18、稍大于多普勒线宽,一则便于调整法珀腔使Vm落到多普勒线型中心频率附近,并与腔频Vq符合;二则使当Vm处在多普勒线型内时Vm+1,Vm-1都处在多普勒线型之外。对于法珀腔的细度则要求不高,只要其透过率线宽小于长腔的纵模间距即可。由于激光腔内有这样一个法珀标具,将只允许增益的多普勒线型与谐振腔腔模线型及法珀腔透过率线型相乘的重叠积分不为零的一个纵模形成激光振荡。腔内加入短的Fox-Smith腔选模,如图7所示; 图7.Fox-Smith选模设置示意图其中M1,M2,M3构成了短的Fox-Smith腔。当M3未调谐是,由于版透半反镜M4的存在,原系统的损耗,加M4造成的介质吸收,散射损耗及反射损耗将

19、大于增益管的小讯号增益系数。这时M1,M2虽然构成谐振腔,也不会产生激光振荡。当调整M3,使得M2,M4,M3亦构成谐振腔时,由于具有选频特性的M2的正反馈光回路的存在,使与M2,M4,M3短的Fox-Smith腔模相适的某一纵模的反射损耗变小。因此与此频率相应的增益系数将较大于损耗,从而产生激光振荡。产生正反馈的频率Vp应满足: Vp=Pc/2(L1+L2) (3)其中P为正整数,L1,L2分别为M2到M4及M3到M4的距离。显然只要L1+L210cm,则在增益曲线的多普勒线型内,将只有一个纵模产生振荡。由上可知,用法珀标准具法选模,是系统内具有滤波器特性的选模法。而Fox-Smith腔选模

20、法,则是先抑止各个纵模,使其处于稍低于临界振荡状态,然后加上具有选频特性的正反馈回路,使其一个单纵模振荡起来。两种方法,异曲同工,都能达到变多纵模激光器为单纵模激光器的目的。但为了获得最大功率输出,两种方法都应配上伺服电路以便控制腔长,使腔模,选频模有最好的符合,且处于多普勒增益线型的中心频率处。并把腔锁定在功率最大处。 通过比较分析,使用F-P标准具选模,其腔内损耗要小于Fox-Smith腔选模;此外F-P选模激光器腔片可以配用最佳透过率的镜片作为输出镜,Fox-Smith腔则不能。基于上述两种考虑,我们选择F-P选模方法。 在试验中利用F-P选模方法得到的单纵模如图8所示:三.结论 在这项

21、工作中所讨论的实验过程是相当简单的并要求对几个基本的激光概念进行了解。除了提供一种方法来准确地显示光学谐振腔理论的基本预测以外,这些实验还提供了一个实用的对激光现象进行研究的基本方法。图8.用F-P选模方法得到的单纵模模式参考文献1 Einstein A 1917 Z. Phys. 18 1212 Gordon J P, Zeiger H J and Townes C H 1954 Phys. Rev. 95 282L3 Schawlow A L and Townes C H 1958 Phys. Rev. 112 19404 Maiman T H 1960 Nature 187 4935 J

22、avan A, Bennett W R Jr and Herriott D R 1961 Phys. Rev. Lett. 6 1066 White A D and Rigden J D 1962 Proc. IRE 50 16977 Amusia M Ya and Kornyushin Y 2000 Eur. J. Phys. 21 3698 Lindberg A M 1999 Am. J. Phys. 67 350 and references therein9 Umesh K S and Srinivasan K 1999 Eur. J. Phys. 18 46210 Haag H W,

23、 Otten E W, Schick M and Weinheimer Ch 1999 Eur. J. Phys. 20 23111 El-Zaiat S Y 1997 Eur. J. Phys. 18 12612 Ojeda A M, Redondo E, Gonzalez Dmaz G and Martil I 1997 Eur. J. Phys. 18 6313 Sikora P, Wiewisr P, Kowalczyk P and Radzewicz C 1997 Eur. J. Phys. 18 3214 McKee D J, NichollsJFHand Ruddock I S

24、1995 Eur. J. Phys. 16 12715 Podoleanu A G, Taplin S R, Webb D J and Jackson D A 1994 Eur. J. Phys. 15 26616 Ruddock I S 1994 Eur. J. Phys. 15 5317 MoosadKPB 1989 Eur. J. Phys. 10 13318 Eberly J H and Javanainen J 1988 Eur. J. Phys. 9 26519 Stenholm S 1988 Eur. J. Phys. 9 24220 Bacon M E, Johnson W J

25、 and Day M A 1986 Eur. J. Phys. 7 25921 Harrington A P and Winter A T 1984 Eur. J. Phys. 5 23822 Indebetouw G and Zukowski T J 1984 Eur. J. Phys. 5 12923 von Bergmann H M and Hasson V 1980 Eur. J. Phys. 1 724 OShea D C and Peckham D C 1981 Am. J. Phys. 49 915 and the references contained therein. Th

26、is resourceletter is an excellent source on the history of lasers and masers25 Brandenberger JR1989 Laser andmodern optics in undergraduate physics Report to Foundations, Corporations,andUndergraduate Colleges (Arlington, VA:National Science Foundation). This report is an excellent sourceof advanced

27、 laser experiments and is highly recommended reading26 Nachman P and Bernstein A C 1997 Am. J. Phys. 65 20227 Kane D M 1991 Am. J. Phys. 59 23528 Whitlatch N 1990 Am. J. Phys. 58 55629 Bhatia K S 1984 Am. J. Phys. 52 73830 Steinhaus D W 1983 Am. J. Phys. 51 82431 Feinberg R 1982 Am. J. Phys. 50 9032

28、 Verdeyen J T 1995 Laser Electronics (Englewood Cliffs, NJ: Prentice-Hall) pp 3944, 1546 33 Milonni P W and Eberly J H 1988 Lasers 3rd edn (New York: Wiley) pp 47580, 49550834 Siegman A E 1986 Lasers 1st edn (Mill Valley, CA: University Science Books) pp 4627, 7446735 SalehBEAandTeich M C 1991 Fundamentals of Photonics 1st edn (New York: Wiley) pp 32730, 48036 Melles Griot 1990 Melles Griot Optics Guide 5 ch 17, 1837 Wilson J andHawkes J FB1989Optoelectronics: an Introduction 2nd edn (EnglewoodCliffs,NJ: Prentice-Hall)pp 176838 Mohon N and Rodemann A 1973 Appl. Opt. 12 783

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1