ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:27.88KB ,
资源ID:3607746      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3607746.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(氧和二氧化碳的转运.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

氧和二氧化碳的转运.docx

1、氧和二氧化碳的转运第二章氧和二氧化碳的转运呼吸是一个燃烧过程,速度非常慢,否则完全跟木炭一样。一一Antoine Lavoisier有氧代谢过程是燃烧营养物质燃料来释放能量。这个过程消耗氧气并释放二 氧化碳。循环系统的作用是输送氧气和营养物质燃料到身体组织,然后清除产生 的二氧化碳。循环系统运输氧气和二氧化碳的双重作用被称为血液的呼吸功能。 本章描述这种呼吸功能是如何进行的。氧气的运输将肺部的氧气运输到代谢组织,可以使用四个临床参数描述:(a)血液中的 氧气浓度,(b)动脉血氧气的传递速率,(c)从毛细血管血液进入组织的氧摄取 率,(d)从毛细血管血液进入组织的氧分数。这四个氧气输送参数以及派

2、生每个 参数的方程见表2. lo彻底了解这些参数是管理危重患者必不可少的。血中的氧(02) 量氧气不容易溶解在水中(1),且由于血浆是93%的水,因此需要一个专门结 合氧(气)的分子(血红蛋白)来促进血液的氧合。血液中的氧(02)也被称为 02含量,02含量是02的总供量,它与血红蛋白结合并且溶解在血浆中。表2.1氧气和二氧化碳的运输参数参数符号方程动脉02含量Ca021. 34XHbXSaO2静脉02含量Cv021. 34XHbXSvO202递送D02QXCaO202摄取V02QX (Ca02-Cv02)02提取率02ERV02/D02C02消除VC02QX (CvC02-CaC02)呼吸商

3、RQVC02/C02缩写:Hb二血液中的血红蛋白浓度;S&02和Sv02二分别指动脉和混合静脉血中血 红蛋口的氧饱和度(含氧血红蛋口占总血红蛋1的比例);Q二心脏输出;CaC02= 动脉血中C02含量;CvC02=混合静脉血中C02含量。与02结合的血红蛋白(氧合血红蛋白)与02结合的血红蛋白(HbO2)浓度由公式2.1 (2)中的变量决定。HbO2=1.34XHbXSO2 (2. 1)Hb是血液中的血红蛋口浓度(通常以g/dL表示,即g/100 mL); 134是血 红蛋白的氧结合能力(以每g血红蛋白多少mL 02表示);S02是血液中氧合血 红蛋口占总血红蛋口的比例(S02二HbO2/总H

4、b),也称作血红蛋口的氧饱和度。 HbO2与Hb浓度的单位(g/dL)相同。公式2. 1表示:当血红蛋白与02完全饱和时(即当S02二1时),每g血红 蛋白通常结合1. 34mL的氧气。通常lg血红蛋口能结合1. 39mL的氧气,但一小 部分循环血红蛋口(3%到5%)以高铁血红蛋白和碳氧血红蛋口的形式存在,因 为这些形式的Hb结合02的能力降低,因此1. 34 mL/g这一较低值被认为更能代表总血红蛋白池的02结合能力(3)o笔记:0尸氧(气);Hb二血红蛋白溶解的02血浆中溶解的02浓度取决于氧在水(血浆)中的溶解度和血液中的氧分压 (P02)。02在水中的溶解度是随温度变化的(溶解度随温度

5、的降低略有增加)。在正常体温(37C)和P02为ImmHg时,0. 03 mL的02能溶解在1升的水中(4)。 表现为溶解系数为0. 03mL/L/mmHg (或0. 003 mL/lOOmL/mniHg)。溶解02的浓度 (单位mL/dL)(体温正常)可由公式2. 2描述。溶解的 02=0. 003 X P02 (2. 2)这个公式显示血浆中氧的溶解度有限。例如,如果P02是100 mmHg, 1 L 的血液将只包含3 mL溶解的02。表2.2动脉和静脉血中氧的正常水平派参数动脉血静脉血P0290 mmHg40 mmHgHb的02饱和度0. 980. 73与02结合的Hb197 mL/L14

6、7 mL/L溶解的022. 7 mL/L1. 2 mL/L总02含量200 mL/L148 mL/L血容量t1. 25 L3. 75 L02的容积250 mL555 mL带派值是在体温37C和血红蛋口 15g/dL (150 g/L)时测得。带i的值是在总血容 量(二L)的基础上估计的,动脉血容量=0. 25X总血容量,静脉血容量=0. 75X总 血容量。缩写:Hb:血红蛋th P02: 02分压。动脉02含量/动脉含02量(Ca02)动脉血的02浓度(CaO2)可通过公式2. 1和2. 2的结合,使用动脉血的S02 和P02来定义(SaO2和Pa02)oCa02= (1. 34XHbXSaO

7、2) + (0. 003XPa02) (2.3)结合的02、溶解的02和总02在动脉血中的正常浓度见表2. 2。每L动脉血 中大约有200 mL的氧,只有1.5% (3 mL)溶解在血浆中。一个平均体型的成人 在休息时的耗氧量为250 mL/min,这意味着,如果我们被迫单靠血浆中溶解的 02,那必须要有89 L/min的心脏输出来维持有氧代谢。这強调了血红蛋白在运 输氧气中的重要性。静脉02含量/静脉含02量(Cv02)静脉血中的02浓度(CvO2)可以与CaO2 -样以相同的方式计算,使用静脉 血的血氧饱和度(02饱和度)和氧分压计算(SvO2和PvO2)。Cv02= (1. 34XHbX

8、SvO2) + (0. 003XPv02) (2.4)SvO2和PvO2的最佳测量方法是通过取自肺动脉的集合或“混合静脉”的血 样本来测量(使用肺动脉导管,见第9章)。如表2. 2所示,SvO2的正常值是73%简化的02含量公式血浆中溶解的02浓度是如此小,它通常会从02含量公式中被消除。因此可 认为血液的02含量与相当于与Hb结合的02 (见方程2. l)o02 含量1. 34XHbXS02 (2. 5)贫血与低氧血症医生经常使用动脉氧分压(P&02)作为血液中含有多少氧的指征。然而,如 公式2. 5所示,血红蛋口浓度是血液中氧含量的主要决定因素。图2.1显示了血 红蛋白和Pa02对血液中氧

9、水平影响的比较。此图显示血红蛋口浓度和Pa02对动 脉血氧含量比例变化的影响。血红蛋口减少50% (从15到7. 5g/dL)相当于Ca02 减少 50% (从 200 到 101 mL/L),而 Pa02 降低 50% (从 90 至45mmHg)仅引起 Ca02 降低8% (从200到163 mL/L)。此图表明,贫血对血液氧合作用的影响比低氧 血症要大的多。它也应作为一个提醒,以避免使用Pa02来评估动脉的氧合作用。 P&02应该被用来评估肺部的气体交换效率(见第19章)。血液中02的缺乏循环血液中总的02容量可通过血液中血容量的产物和02的浓度来计算。定 卖血和静脉血中02量的估计见表

10、2. 2o动脉和静脉血中结合的02容量为微薄的 805mLo这一容量是多么的有限,试想一个平均体型的成人在休息时全身的02 含量是250 mL/mino这意味着,血液中的02容量只能维持机体3到4 min的有 氧代谢。因此,如果一个患者停止呼吸,你只有宝贵的儿分钟时间在其血液中氧 储存完全耗尽前开始给他行辅助呼吸操作。血液中数量有限的02也可通过葡萄糖的氧化代谢来表示,葡萄糖的有氧代 谢公式为:CeHxzOs + 60: = 6C0: + 6H:0o这个公式表明,完整的1 mol葡萄糖氧化 利用6 mol的氧气。为了确定血液中的02是否足够维持血液中葡萄糖的代谢, 有必要将血液中的葡萄糖和氧气

11、的量用mmol这一单位来表示。(这里显示的值基 于90mg/dL或90/180=0. 5 mmol/dL的血糖水平,5L的血容量,805 mL或 805/22. 2=36. 3 mmol 的总血液 02 ):血液中总的葡萄糖 25 mmol血液中总的02 36.3 mmol葡萄糖代谢需要的02 150 mmol这表明血液中的02只有总量的20%到25%为血液中葡萄糖的完全氧化代谢所 需图2.1图表显示血红蛋白浓度(Hb)和动脉氧分压(P&02)的等量降低(50%) 对动脉血中氧浓度的影响。为什么02这么少?一个显而易见的任正常 么一个需要氧气维持生存的机体被设计为在氧 气有限的环境中进行勅切、

12、如;答案可能与氧气的潜在毒性有关。众所周知,氧 气 低氧血症贫血通过产生有毒的代谢产物能造成致命的细胞损伤(超氧化物自山基,过氧化氢和 疑自山基),因此,在细胞附近限制氧气浓度,可能是保护细胞避免氧诱导细胞 损伤的机制。氧诱导的损伤(氧化性损伤)在临床疾病中的作用是非常激动人心 和活跃的研究领域,本章结尾的参考书tl包括一本教科书(生物学和医学领域中 的自由基),这是关于这一学科的最好的单一信息资源。丰富的血红蛋白与血液中氧容量小相反,循环血红蛋白的总量似乎过多。如果正常血清Hb 是15g/dL (150g/L)且正常血容量是5 L(70 mL/kg),那么循环的血红蛋白的总 量时750 g

13、(0. 75 kg)或1.65磅。为了证明血液中血红蛋白池的规模庞大,图 2. 2中的插图比较了血红蛋口与正常体重的心脏的重量。心脏的重量只有300g, 因此,循环的血红蛋白池的重量是心脏的25倍!这意味着,每60秒,心脏必 须在循环系统中推动超过自身两倍以上重量的移动。所有的血红蛋白都是必要的吗?稍后所示,当从全身毛细血管的氧提取达到 最大时,静脉血中40%到50%的血红蛋口仍与氧饱和。这意味着,儿乎有一半的 循环血红蛋口不是用来支持有氧代谢。那这多余的血红蛋白用来做什么呢?运送 二氧化碳,见本章节后面所述。图2. 2平衡标尺显示循环血红蛋白与正常体重的心脏相比时多余的重量。氧输送/氧递送(

14、DO2)进入肺部血流的氧气通过心输出量进入重要的器官。这种情况发生的速度被 称为氧输送(D02)o D02描述了每分钟到达全身毛细血管的氧气量(mL)。它相 当于动脉血氧含量(Ca02,单位mL/L)和心输出量(Q,单位L/min)的产物 (2, 5, 6, 7)oD02=QXCa02X10 (2.6)(乘以10是用来转换Ca02的单位,从mL/dL到mL/L,因此,D02的单位为 mL/mino)如果将C&02分解成其组成部分(134XHbXS&02),公式2.6可以改 写为:D02=Q XL34XHbX Sa02 X10 (2. 7)当用肺动脉导管来测量心输出量(见第9章),D02可用公式

15、2. 7计算。成 人休息时的正常D02为900-1100 mL/min,或500-600 mL/min/m2,校正身材时 (见表2. 3)o表2.3氧气和二氧化碳运输参数的正常范圉参数绝对范围调整身材的范用派心输出量5-6 L/min2. 4-4. 0 L/min/m202递送900-1100 mL/min520-600 mL/min/m202摄取200-270 mL/min110-160 mL/min/m202提取率0. 20-0. 30C02消除160-220 mL/min90-130 mL/min/m2呼吸商0. 75-0. 85校正身材后的值派通过绝对值除以患者的体表面积(单位m2)计

16、算。氧摄取/摄氧量(V02)当血液达到全身毛细血管,氧从血红蛋白中分离出来,并进入组织。这一现 象发生的速度称为氧摄取(V02)o氧摄取描述没分钟离开毛细血管,进入组织的 氧气的体积(单位mL)。由于氧气不能在组织中储存,因此,V02也是衡量组织 耗氧量的一个指标。V02 (mL/min)可通过心输出量(Q)和动静脉血氧含量差 (CaO2-CvO2)来计算。V02= QX (CaO2 - CvO2) X10 (2.8)(乘以10与解释D02时的原因一样。)这种派生V02的方法被称为烦Fick 氏法,因为公式2. 8是Fick方程的一个变化(心输出量是派生的变量:Q二V02/ CaO2-CvO2

17、) (8)。因为 502 和 Cv02 的公式相同(1. 34XHbX10),公式 2. 8 可 重新描述为:V02= QX1.34XHbX (Sa02 - SvO2) (2. 9)这个公式表示V02使用的是在临床实践中可以测量的变量。在这个公式中决 定V02的因素见图2.3所示。健康成人在休息时V02的正常范围是200-300 mL/min,或 110-160 mL/min/m2,当校正身材时(见表 2.3)。图2.3决定氧从微循环中摄取(V02)的因素的示意图。SaO2和SvO2=动脉血 和静脉血中血红蛋白的氧饱和度;P02二氧分压;Hb二一个血红蛋白分子。Fick (菲克)和全身的V02

18、改良的菲克公式中的V02不等于全身的V02,因为它不包括肺部的02消耗 量(&9, 10)o通常情况下,肺部的V02代表低于全身5%的V02 (9),但它在肺 部炎症性疾病的患者中可占全身V02的20% (这在ICU患者中很常见)(10)。这 种差异在V02用作血流动力学管理终结点时可能是重要的(见第11章),因为全 身V02的低估可能导致V02增加的过度的管理。V02的直接测量(在下面介绍) 更能准确地表述全身的V02oV02的直接测量全身V02可通过监测氧气从肺部消失的速率来直接测量。这可以用一个专门 配备氧气分析仪的仪器完成,氧气分析仪是连接到近端气道(通常是在气管插管 患者)以测量吸入

19、或呼岀气体的02浓度。这个装置记录和显示的V02是作为分 钟通气量(VE)和吸入与呼出气体中氧气的分数浓度(Fi02和FeO2)的产物。V02=VB X (Fi02 - FA) (2.10)V02的直接测量比计算出的(菲克)V02更准确,因为它更接近全身的02。 它与菲克V02相比还有其它儿个优势,这些都将在第11章描述。直接测量V02 的主要缺点是许多ICU都缺乏这一监测设备,并且需要训练有素的人员来操作这 些设备。氧提取率(OKR)递送到毛细血管并进入组织的这部分氧是一个氧运输效率的指标。这可通过 氧提取率(02ER)这一参数来监测,02ER是指氧气摄取与氧气递送的比率。02ER=V02

20、/ D02 (2.11)这个比率可以乘以100, 一百分数表示。因为VO2和D02的公式相同 (QX1.34XHbX10),因此,公式2. 11可减少为只有两个测量变量的公式:O2ER= (SaO2 - Sv02) / SaO2 (2. 12)当SaO2接近1.0 (通常情况下),02ER与(S&02 - Sv02)的差大致相当: 02ER (SaO2 - Sv02)oO2ER通常约为0.25 (范围=0. 2-0.3),如表2. 3所示。这意味着,运送到全 身毛细血管的氧只有25%进入组织。虽然通常02的提取低,但他是可调节的, 并且半氧输送受损时02的提取可增加。02提取的适应性是组织氧合

21、控制的一个 重要因素,见下所述。氧摄取的控制氧气运输系统的运作,以保持在氧供变化时(不同的D02)有恒定流量的氧 气进入组织(恒定的V02)o 02的提取来调整02输送的变化的能力使这种行为能 实现(11)。V02的控制系统可通过重新排列02提取公式(公式2. 11)使V02 成为因变量来描述:VO2 DQXOER (2. 13)这个公式表明,如果02输送的变化随02提取呈等效和相互的变化,那么 V02会表示不变。然而,如果02的提取固定不变,那么D02的变化将随V02呈 等量变化。因此,02提取来调整D02的变化的能力决定保持恒定V02的能力。D02和V02的关系02输送和02摄取之间的正常

22、关系见图2. 4所示(11)。当02输送(D02) 开始减少低于正常时(途中箭头表示),02摄取(V02)最初保持不变,表明02 提取(O2ER)在D02降低时呈增加趋势。D02进一步减,最终导致V02出现开始 降低的拐点。当02提取提高到30%至60%的最高水平(O2ER二0. 5-0. 6), V02开始 从固定不变到不断变化转换。一旦QER达到最大,D02的进一步减少会导致V02 的等量减少,因为02ER是固定的且不能进一步增加。当这种悄况发生时,V02 被称为处于供应-依赖,并且有氧代谢率受氧供限制。这种情况称为氧化障碍 (12)o当有氧代谢(V02)开始下降,高能磷酸(ATP)的氧化

23、产物开始下降, 导致细胞功能受损,病最终导致细胞死亡。这个过程的临床表现是临床休克和渐 进的多器官功能衰竭(13)。临界D02在V02成为供应-依赖时的D02,被成为临界氧输送(临界D02)o这是全力 支持有氧代谢的最低的D02,可通过D02-V02曲线中的曲折处确定(见图2.4)。 尽管临界D02能识别无氧阈值的能力,但临界D02的临床价值有限。首先,临界 D02在重症患者的研究中变化很大(11, 13, 14),且在任何ICU的任何患者中都 无法预测临界D02。第二D02-V02曲线可以是曲线的(即,V02从固定不变到 不断变化没有一个单一的过渡点)(13),在这种情况下,无法确定临界D0

24、2。D02: D02的比率可能是比临界D02更能确定(和避免)无氧阈值的一个有 用的参数。保持D02: 4:1或更高的V02比率被推荐作为避免重症患者无氧阈值 的一个管理策略。图2.4该图显示当02输送逐步下降时02输送()和02摄取()间的正常关 系,由箭头表不。二氧化碳的运输二氧化碳(C02)是氧化代谢的主要终产物,因为它很容易与水化合形成碳 酸,如果能累积,它可以是严重酸中毒的一个来源。从体内消除C02的重要性在 通气控制系统中的作用是显而易见的,该系统能保持动脉P02 (PaC02)的稳定。 5 mmHg PaC02的增加可能会导致每分钟通气量增加两倍。为了产生相等的通气 量的增加,动

25、脉氧分压必须下降至55 mmHg (16)。通气控制系统要注意高碳酸 血症和忽略低氧血症的这一趋势是耐人寻味的,因为它表明,与促进有氧代谢相 比(通过提供氧气),通气系统更关注代谢废物(C02)的清除。二氧化碳的水合据报道,成人身体总的C02量是130 L (17),根据一个成人身体总水量平 均只有40至45 L,这似乎是可能的。C02与水发生化学反应产生碳酸的趋势可 以解释这种困境。C02发生水合和转变为碳酸是一个连续的过程,这会创建一个 永久的梯度驱动C02进入溶液。因为C02不断消失,故溶液中的C02总量可能会 超过溶液的体积。如果你曾经打开过一个热的香槟酒瓶,你就已经口睹了多少 C02

26、可以溶解在溶液中。二氧化碳运输方案C02运输是一个复杂的过程,见图2. 5所示。C02运输的核心是它与水的反 应。该反应的第一阶段涉及碳酸的形成。这通常是一个缓慢的反应,大约需要 40秒来完成(18)。碳酸酊酶的存在使反应速度大大增加,不到10毫秒(msec) 即可完成(18)。碳酸酊酶局限存在于红细胞,血浆中则不存在。因此,C02仅 在红细胞快速与水结合,这会产生一个压力梯度,从而推动C02进入细胞。图2. 5 C02运输中涉及的化学反应。括号中的数值表示每个部分通常在1L静脉 血中的量。双箭头表示有利的途径。碳酸能瞬间分解产生氢离子和碳酸氢盐离子。在红细胞中生成的很大一部分 碳酸氢盐通过与

27、氯化物交换被泵回到血浆。在红细胞中生成的氢离子通过血红蛋 白缓冲。通过这种方式,进入红细胞的C02被分解和部分储存(血红蛋口)或排 岀(碳酸氢钠),以创造更多的C02进入红细胞。这些过程创建一个汇点,以容 纳大量的C02在红细胞中。红细胞中的一小部分C02在血红蛋口上与游离氨基反应产生氨基屮酸,氨基甲酸 分解形成氨屮酰残基(HbNHCOO)和氢离子。这个反应为血红蛋口提供另一个作 为缓冲剂的机会。血液中的C02含量血液中不同的C02测量结果见表2. 4。如同氧气,C02以溶解的形式存在, 且溶解的C02浓度由二氧化碳分压(PCOJ 和C02在水中的溶解系数确定(即 0. 69mL/L/mmHg

28、, 37C) (19)。动脉和静脉血中溶解的C02含量见表24 (20)。 与氧气一样,溶解的C02只是血液中总C02含量的一小部分。血液中CO2的总含量是儿个部分的总和作用的结果,包括在血浆和红细胞中 溶解的C02和碳酸氢盐的浓度,以及红细胞中氨屮酰C02的含量。这些部分在静 脉血中的正常值见图2. 5所示。如果这些值相加,总的C02含量是2. 3 mEq/L, 17 mEq/L在血浆中,6 mEq/L在红细胞中。血浆中C02的(数量)优势是蒙蔽人 的,因为大多数的血浆成分是以碳酸氢盐的形式存在,这部分碳酸氢盐已从红细 胞中排除。表2.4动脉和静脉血中C02的正常水平参数动脉血静脉血PC02

29、40 mmHg45 mmHg溶解的C0227 mL/L29 mL/L总C02含量490 mL/L530 mL/L血容量t1.25 L3.75 LC02容积613 mL1988 mL带的值的体温是37Co带1量是根据总血容量(TBV) 5 L来佔讣的,动脉血容量为0. 25XTBV,静脉血 容量为0. 75XTBVo缩写:PC02二C02分压。表2. 5血液蛋口质的缓冲能力血红蛋白血浆蛋白质固有缓冲能力0. 18 mEq H7g0. 11 mEq H*/g在血液中的浓度150 g/L38. 5 g/L总的缓冲能力27. 5 mEq H7g4. 2 mEq H*/g因为容易分解成离子(氢离子和碳酸

30、氢根离子),C02浓度往往用离子当量 (mEq/L)来表示,如图2. 5所示。转换为体积单位(mL/L或mL/dL)是可能的, 因为1 mol的C02将占据22. 3 L的体积。因此:C02 (mL/L)二 C02 (mEq/LX22. 3)表2. 4包括血液中的C02含量,以体积单位表示(20)。需要注意的是血液 中的C02总量(约2. 6L)是血液中02的3倍以上(805 mL)。血红蛋白作为一个缓冲剂图2.5显示了血红蛋白通过缓冲红细胞中水化的C02所产生的氢离子,在 C02的运输中起着核心作用。血红蛋白的缓冲能力见表2.5所示(21)o请注意, 血红蛋白总的缓冲能力是所以血浆蛋口的缓冲

31、能力的6倍以上。血红蛋白的缓冲作用是山于分子中的38组氨酸残基上的咪醴基团。这些咪 醴基团的解离系数pK为7.0,因此,它们在pH在6至8这一范圉中起到有效地 缓冲作用(缓冲剂在一个pH的两侧pK范围都是有效的)(20)o相比之下,碳酸 氢盐缓冲系统有一个6. 1的pK,所以这个缓冲系统在pH从5. 1到7. 1这一范圉是有效的。比较血红蛋口和碳酸氢盐的缓冲范用显示,在临床上遇到的pH 范围中(pH值78),与碳酸氢盐相比,血红蛋白是一种更有效的缓冲剂!血红 蛋白这方面的功能更值得关注。为何血红蛋白会多余?如前所述,血液中血红蛋口的含量远远超过需要输送氧气的量,考虑血红蛋 白在C02输送中所扮演的角色,很可能多余的血红蛋白是用来运输C02。考虑到 血液中大量的C02(见表2.4),很容易理解为什么血液中会有这么多的血红蛋白。图2.6动脉血(02饱和度=98%)和静脉血(02饱和度=70%)的C02解离曲线。 两点表示动脉和静脉血液中C02的含量。括号显示血红蛋白去饱和作用(霍尔丹 效应)以及从动脉血到静脉血过程中增加C02含量的代谢的C02产物(PC02效 应)的相对贡献。霍尔丹效应血红蛋

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1