ImageVerifierCode 换一换
格式:DOCX , 页数:19 ,大小:578.90KB ,
资源ID:3590046      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3590046.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(数字积分器.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

数字积分器.docx

1、数字积分器电 子 课 程 设 计题 目: 数字积分器专 业: 电子信息工程姓 名: xxx学 号: xxx指导教师: xxx电气与信息工程学院2013年6月28日成绩评定指导教师评语: 成绩等级: 指导教师签字: 年 月 日一、设计的任务和要求(一)设计要求:1、模拟输入信号010V, 积分时间110秒,步距1秒。2、积分值为00009999。3、误差小于1%1LSB。4、应具有微调措施,以便校正精度。(二)设计方案1、通过数字积分器,对输入模拟量进行积分,将积分值转化成数字量并显示。输入与输出的对应关系为:输入1V,转化为频率100HZ,计数器计数为100,积分为1S,积分十次,输出为100

2、0.输入模拟量的范围为010V,通过10次积分,输出积分值为00009999.误差要求小于1%1LSB。数字积分器应具有微调措施,对于有元件参数引起的误差,以通过微调进行调节使其达到误差精度。微调的措施应尽可能使电路简单,便于调节,能提供微小调节,尽快达到要求。2、方案选择图1 数字积分器方案(三)所用元器件组件:74LS00、74LS08、74LS161 a741,NE555,3DK7,LM358电阻: 100K*2 10K*2 300K*1 51K*1 2K*1电容:0.1F*3 100F*1调零电位器:10K二、方案选择与原理(一)基本运算电路原理与说明:1运算放大器的主要技术参数双输入

3、、单输出运算放大器的符号如图1所示,各端子相对于地的电压及端子电流如图中所示。在实际中,运算放大器有上千种型号,描述其性能的技术参数如下: 图2 运算放大器的符号 图3 运算放大器的输入失调电压图4 LM358管角图(1)输入失调电压Uio实际运放由于制造工艺问题,两个输入通路不可能完全匹配,当输入电压Ui为零时,输出电压Uo并不为零。这相当于在两输入通路完全匹配运放的输入端串有一电压源Uio,如图2所示。显然,当Ui =Uio时,输出电压Uo=0。Uio称为运放的输入失调电压。对超低失调运放,Uio可低于20 V。输入失调电压的一种测试电路如图3所示,R=R1/Rf,可求得按上式用电压表测得

4、输出电压Uo后,可计算出输入失调电压Uio。(2)输入失调电流Iio运放输出电压为零时,两个输入端静态电流的差值定义为输入失调电流。 图5 测试失调电压的电路(3)输入偏置电流Iib运放输出电压为零时,两个输入端静态电流的平均值定义为输入偏置电流。对双极型运放,可达纳安量级;对MOS运放,可达皮安量级。图6 测试失调电压的电路(4)开环电压增益A0运放的电压传递函数与频率有关,在一定频率范围内近似为式中:A0为直流增益; 0=2 f0为3dB角频率,f0通常在10Hz以下。在无外部反馈条件下,给运放施加一小信号,使运放工作在线性区,且信号频率很低,低于运放的3dB带宽,输出信号电压与输入差分信

5、号电压的比值称为开环电压增益。其值A0可超过100dB。对设计良好的运放或内部补偿运放,开环电压增益与3dB带宽频率的乘积近似等于单位增益频率(增益为1时的频率),它是有源滤波器设计中一个很重要的参数。对 A741型运放,其典型值为1MHz。(5)转换速率SR(也称压摆率)在阶跃电压输入下,运放输出电压的最大变化速率称为转换速率。在运放参数手册中,通常以单位V/( s)表示。当输入信号频率比较高时,由于运放内部电容的电流受晶体管可提供电流的限制,因而电压的变化率不能超过某一最大值。受转换速率影响,当信号频率高于一定值时(取决于运放增益,电路的闭环增益等因素),会引起输出信号的失真。2基本运算电

6、路(1)反相比例运算电路电路如图2.6-4所示,理想电压传递比为图7 反相比例运算电路在电路设计时,电阻的取值应在合适的范围之内,除应满足电压传递比要求外,还要考虑运放输出电流的限制,并使运放非理想因素的影响尽可能地小。此外,电阻本身的功耗不能超过其额定值。对图2.6-4电路,Rf的取值应使运放的输出电流小于其最大值。设运放输出端与地间不接负载,则运放的输出电流设运放的最大输出电压为Uom,最大输出电流为Iom,则Rf的值一般应满足Rf取值也不能过大,否则流过Rf的电流则比较小,运放输入失调电流的影响变大。阻值过大的电阻稳定性差,精度低,噪声也大。通常Rf的取值在数千欧到数百千欧之间。Rf确定

7、后,再根据电压传递比确定R1的值。此外,Rf、R1的值还应尽可能属于标称系列,一般要避免使用串并联形式匹配其值。(2)同相比例运算电路电路如图2.6-5所示,理想电压传递比为图8 同相比例运算电路3、积分电路如图4所示,设,运放是理想的,则如果输入电压为阶跃信号,上式积分为式中:RC为积分时间常数。在一定时间后,运放进入负饱和区。如果输入为正弦电压,则积分器的输出为输出电压的幅值与频率成反比,相位超前输入电压90。在理想情况下,只要输入信号为足够小的正弦函数,输出电压也为正弦函数。图9 积分电路当考虑运放失调因素的影响时,即使输入电压uin=0,输出仍有一定数值的零漂电压,这个电压随时间变化,

8、该现象称为积分漂移。为了减小积分漂移,实际中给积分电容还并接一比较大的反馈电阻Rf,如图4所示。为了减小由Rf引起的积分误差,一般取Rf 10R。(二)555构成的比较电路一、555简介1、关于脉冲信号狭义:持续时间极短的电压或电流信号广义:凡不具有连续正弦形状的信号2、关于脉冲单元电路用来产生、变换、真心脉冲信号的电路3、脉冲单元电路的主要形式(1)施密特触发器(2)单稳态触发器(3)多谐振荡器(4)555定时器4、555定时器是一种多用途的数字-模拟混合集成电路,只要在外部配上适当的阻容元件,就可以方便的构成施密特触发器、单稳态触发器和多谐振荡器。在工业自动控制、定时、仿声、电子乐器、防盗

9、报警等方面得到广泛应用。二、555芯片说明(1)NE555定时器是一种多用途的数字模拟混合集成电路,利用它能极方便地构成施密特触发器、单稳态触发器和多谐振荡器。组成的施密特触发器可用于脉冲的整形,单稳态触发器可用于调整脉冲的宽度,多谐振荡器可用于提供方波信号。因而NE555广泛用于信号的产生、变换、控制与检测。其工作原理如下:图10 555电路内部电路方框图555电路的内部电路方框图如右图所示。它含有两个电压比较器,一个基本RS触发器,一个放电开关T,比较器的参考电压由三只5K的电阻器构成分压,它们分别使高电平比较器A1同相比较端和低电平比较器A2的反相输入端的参考电平为和。A1和A2的输出端

10、控制RS触发器状态和放电管开关状态。当输入信号输入并超过时,触发器复位,555的输出端3脚输出低电平,同时放电,开关管导通;当输入信号自2脚输入并低于时,触发器置位,555的3脚输出高电平,同时放电,开关管截止。是复位端,当其为0时,555输出低电平。平时该端开路或接VCC。Vc是控制电压端(5脚),平时输出作为比较器A1的参考电平,当5脚外接一个输入电压,即改变了比较器的参考电平,从而实现对输出的另一种控制,在不接外加电压时,通常接一个0.01uf的电容器到地,起滤波作用,以消除外来的干扰,以确保参考电平的稳定。T为放电管,当T导通时,将给接于脚7的电容器提供低阻放电电路。1 组成施密特触发

11、器电路如图3-1所示,只要将脚2和6连在一起作为信号输入端,即得到施密特触发器。图3-2画出了、Vi和Vo的波形图。设被整形变换的电压为正弦波,其正半波通过二极管D同时加到555定时器的2脚和六脚,得到的Vi为半波整流波形。当Vi上升到时,Vo从高电平转换为低电平;当Vi下降到时,Vo又从低电平转换为高电平。 回差电压:V=图11 555构成施密特触发器 图12 555构成施密特触发器的波形图构成单稳态触发器 图13 单稳态触发器如右图为由555定时器和外接定时元件R、C构成的单稳态触发器。D为钳位二极管,稳态时555电路输入端处于电源电平,内部放电开关管T导通,输出端Vo输出低电平,当有一个

12、外部负脉冲触发信号加到Vi端。并使2端电位瞬时低于,低电平比较器动作,单稳态电路即开始一个稳态过程,电容C开始充电,Vc按指数规律增长。当Vc充电到时,高电平比较器动作,比较器A1翻转,输出Vo从高电平返回低电平,放电开关管T重新导通,电容C上的电荷很快经放电开关管放电,暂态结束,恢复稳定,为下个触发脉冲的来到作好准备。波形图如下: 图14 单稳态电路波形图暂稳态的持续时间Tw(即为延时时间)决定于外接元件R、C的大小,Tw=1.1RC 。 通过改变R、C的大小,可使延时时间在几个微秒和几十分钟之间变化。当这种单稳态电路作为计时器时,可直接驱动小型继电器,并可采用复位端接地的方法来终止暂态,重

13、新计时。此外需用一个续流二极管与继电器线圈并接,以防继电器线圈反电势损坏内部功率管。三、555构成的电压频率转换电路电路中,NE555的振荡频率由VT2进行控制,其3脚输出波形的低电平期间(输出波形的T1期间),由于VTI截止,VT2导通有电流Ic2流通,其大小受Al输出电压的控制。 C2的放电时间T1=C2U2/(2Ic2),,式中,Uz为VD1的稳定电压。NE555输出高电平时,电流由其3脚经VD3.R2与C2流通。这时VTl转为饱和导通,VT2的基极相当于短路,因此VT2截止,其集电极电流Ic2为零。C2的充电时间T2由R2阻值决定。图15 555构成的电压频率转换电路VT2的发射极输出

14、的脉冲波形如图中所示。T1期间的电压等于Ic2xRl;T2期间电压为零。VT2的发射极脉冲电压的平均值等于输入电压Ui时,电路达到平衡状态由此可知,输出频率fo与输入电压Ui成比例。电路中,VTl对恒流晶体管VT2进行通断控制,并对Al的反馈电压进行补偿,防止 T2(它与输人电压无关)产生的非线性。T1时间比T2短时,电路迸人饱和状态,因此振荡频率的上限由T2的长短决定,即f(omax)=l/(2T2)。改变R2阻值可调整刀的长短,这样f(omax)可达2OkH,电路能稳定工作。(三)由四片161构成09999范围的计数器将四片74LS161改成十进制计数器,在数字电路课程中学过并掌握。三、整

15、体实验方案(一)V/F转换器最终确定的 电压-频率转换器 电路的实验图 如下图所示: 图16 压频转换仿真后的效果在该电路中,通用运算放大器uA741被接成了积分器的形式。输入电压经R3、R4分压后送入uA741的3脚作为参考电压。假设Q1管截止,那么就有IR1R2=IC1,Vi给C1充电,uA741的6脚的电压不断下降。当uA741的6脚的电压下降到NE555的5脚的电压的一半也就是2.5V时NE555状态翻转,3脚输出高电平15V,Q1导通,C1放电,uA741的6脚的电压上升。当该电压上升至NE555的5脚的电压5V时NE555的状态再次翻转,Q1截止,电容C1再次被充电。电路输出一个周

16、期的脉冲方波振荡信号。NE555的7脚是集电极开路输出,R6为上拉电阻,其上端接至+5V从而使得电压-频率转换器的输出与TTL电平相匹配。下面计算确定R1、R2和C1的值:设 R=R1+R2 , R3=R4 则有 解得设 R7=5k, Vi=1V , 则输出频率f应为100Hz代入可得 解得 R(1)=5.278kR(2)= 94.72k(采用此值)至此确定: R1为100k可调电阻, R2=51k, R1+R295k R3=R4=2.1k,R7=5K C1=0.02F该电压-频率转换器电路各点的波形如下图所示。波形左边的字符串为网络标号,它们已在上面的电路原理图的相应位置被标出。该波形为计算

17、机仿真的结果,下同。图17 电压-频率转换器电路各点的波形1图18 电压-频率转换器电路各点的波形2上面所述电压-频率转换器电路为最终确定的方案。在最初的设计中:(1)R7的值为,这就使得: (a)晶体管Q1的ce间的压降对电路线性的影响比较大。(b)计算可知,当时,。因此微调多圈可调电阻R1起不到调整输出频率的作用。因此,将R7的值改为5k左右。(2) NE555的5脚仅接有小电容而不接到+5V,这将使得NE555的5脚的电压为10V。因此,uA741的输出电压就会在5V-10V间振荡。uA741在输出为5V-10V时的输入电阻等的线性程度没有在其输出为2.5V-5V时好。故将NE555的5

18、脚接到电源+5V。不过这样做是否会使电路的精度有可以测量到的改善尚待计算和实验证实。(二) 单稳电路(积分时间)用于控制积分时间的单稳态电路的原理图如下:图19 控制积分时间的单稳态电路的原理图该电路为555时基集成块组成非可重复触发单稳态电路时的标准电路。该单稳态电路各点的波形如下图所示:图20 单稳态电路各点的波形(三)四位十六进制计数器四位十六进制计数器的电路原理图如下:图21 四位十六进制计数器的电路原理图在第一个74LS161 (U1)的2脚(clock)输入计数脉冲。当计数进行到9 (1001B)时与该74LS161输出相连的与非门输出低电平。这样当下一个计数脉冲到来的时候,由于7

19、4LS161的 为低电平,故74LS161 被置数为0。这样就把16进制计数器改为了十进制计数器。同时,与非门的输出还可以作为下一片74LS161的时钟信号。图22 波形图(四)设计方案整体 整个数字积分器电路各点的波形如下图23 整个数字积分器电路各点的波形整个数字积分器的电路原理图如下:图24 数字积分器的电路原理图四、心得体会这次实验使我们有史以来,在硬件方面做的最大的一次实验,所以叫“课程设计”。这次课程设计,我们从陌生到熟悉,从熟悉到熟练,这是一个过程,在这个过程中间,我懂得了很多东西,1.知识的匮乏:缺乏知识的迁移能力和查阅资料并取其精华而为我所用的能力。这次实验拿到题目以后,基本

20、形容是目瞪口呆。因为压频转换这部分电路以前从来没有接触过,需要用到模拟电路运算放大器的一些知识。而原本对161计数器和NE555原理懂得不是透彻的我,这次要从理论的做题考试上升到课设实验这个阶层中,不仅要将它们的功能烂熟于心,更要运用相应的功能去解决实际问题。这又是一个理论到实际的飞跃。在查资料时,我也遇到了不少阻力,并曾经一度走上歧途查到的好多东西和实验关系不大,以至于我把358的内部结构都翻了出来,可是内部的电路图是一点也看不懂,这就是“只见树木不见森林”了,真正的它实现的功能没有找到,这就是工作重心偏置导致了效率不高。2.做事图快不求精,缺乏完善的准备工作,最终导致“欲速则不达”。实验是

21、最讲求实际的,在没用充分准备的情况下,一位求成只能说是心理的不成熟。布线这一过程给了我很深的教育做试验没有偶然性,面包板不会欺骗自己,不会由着你的思维和风格区自身的调试,所以我们要老老实实的一步一个脚印的按步骤进行,才能有条不紊。3.分工与合作的重要性分工与合作在现实生活中运用的几乎无处不在,在实验中尤为突出。经过这次实验,我们总结道:在实验进行的每一步,都要经过长时间的讨论,才决定行动的方向。之后便是分工各自来完成各自的一部分内容。而后汇总,再讨论,继续进行这样形成一种良性的循环。只懂合作,不懂分工,可能产生互相推拖或是两人同时做同样的事,耽搁了时间等问题。只懂分工,不懂合作,却又会是两人的

22、内容渐渐背离。所以,合作与分工是我们在本次实验中必须用心把握的。4.工科是以实验为基础的学科,做实验不仅能培养我们的创新能力,让我们懂得物理量之间的内在联系,功能在实际中的应用以及在有轮廓的情况下将想法细致化并寻求最佳方案,做到去粗取精,更能培养我们的忍耐力和坚忍不拔的意志。在实验的过程中,成功的结果固然重要,但更重要的是解决问题战胜困难的过程,光有勇气不行,更需要的是理性的分析和平和的心态,做实验遇到了这门多阻碍,我曾几次想把面包板摔了撂挑子不干了,可是现在回首一想,那时的心态是多幼稚,其实成功背后的酸甜苦辣,甚至脆弱和颓废都是必不可少的心理过程,也是为成功奠下的坚实的基石。只有经历过,才能真正体会并享受成功带来的欢乐。相信这也是今后工作和生活得宝贵的经验财富!参考文献 1 杨欣等. 电子设计从零开始 清华大学出版社 2005年2 阎石. 数字电子技术基础(第五版) 高等教育出版社 2004年3 童诗白. 模拟电子技术基础(第四版) 高等教育出版社 2006年附录:数字积分器整体电路图

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1