ImageVerifierCode 换一换
格式:DOCX , 页数:11 ,大小:174.51KB ,
资源ID:3501272      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3501272.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(图像边缘.docx)为本站会员(b****4)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

图像边缘.docx

1、图像边缘基于LOG算法的图像边缘检测学院:电子信息学院姓名:李博雅学号:2012110237基于LOG算法的图像边缘检测摘要:在实际图像处理问题中,图像的边缘作为图像的一种基本特征,经常被应用到较高层次的图像应用中去。它在图像识别,图像分割,图像增强以及图像压缩等的领域中有较为广泛的应用,也是它们的基础。关键字:LOG算法,图边缘检测Abstract:In image processing, as a basic characteristic, the edge of the image, which is widely used in the recognition, segmentatio

2、n, intensification and compress of the image, is often applied to high-level domain.Key words:LOG operator,edge detection1引言边缘检测是图像处理与分析中最基础的内容之一,也是至今仍没有得到圆满解决的一类问题。图像的边缘包含了图像的位置、轮廓等特征,是图像的基本特征之一,广泛地应用于特征描述、图像分割、图像增强、图像复原、模式识别、图像压缩等图像分析和处理中。因此,图像边缘和轮廓特征的检测与提取方法,一直是图像处理与分析技术中的研究热点,新理论、新方法不断涌现2.图像边缘的定

3、义图像的大部分主要信息都存在于图像的边缘中,主要表现为图像局部特征的不连续性,是图像中灰度变化比较剧烈的地方,也即我们通常所说的信号发生奇异变化的地方。奇异信号沿边缘走向的灰度变化剧烈,通常我们将边缘划分为阶跃状和屋顶状两种类型。阶跃边缘中两边的灰度值有明显的变化;而屋顶状边缘位于灰度增加与减少的交界处。在数学上可利用灰度的导数来刻画边缘点的变化,对阶跃边缘、屋顶状边缘分别求其一阶、二阶导数。对一个边缘来说,有可能同时具有阶跃和线条边缘特性例如在一个表面上,由一个平面变化到法线方向不同的另一个平面就会产生阶跃边缘;如果这一表面具有镜面反射特性且两平面形成的棱角比较圆滑,则当棱角圆滑表面的法线经

4、过镜面反射角时,由于镜面反射分量,在棱角圆滑表面上会产生明亮光条,这样的边缘看起来象在阶跃边缘上叠加了一个线条边缘由于边缘可能与场景中物体的重要特征对应,所以它是很重要的图像特征。比如,一个物体的轮廓通常产生阶跃边缘,因为物体的图像强度不同于背景的图像强度。3.线性滤波边缘检测方法经典的算子,它们都是计算一阶导数的边缘检测器。其基本思想都是:如果所求的一阶导数高于某一阈值,则确定该点为边缘点。但是这样做会导致检测的边缘点太多。一种更好的方法就是求梯度局部最大值对应的点,并认定它们是边缘点。造成经典边缘算子不能准确判定边缘的存在及正确位置的原因在与:1、实际的边缘灰度与理想的边缘灰度值间存在差异

5、,这类算子可能检测出多个边缘;2、边缘存在的尺度范围各不相同,这类算子固定的大小不利于检测出不同尺度上的所有边缘;3、对噪声比较敏感。为了解决这一问题,发展并产生了平滑滤波边缘检测方法,也就是边缘检测中理论最成熟的线性滤波方法,也称线性边缘检测算子。在线性滤波边缘检测方法中,最具代表性的是Marr_Hildreth提出的LOG(Laplacian of Gaussian,LoG)算法,canny最优算子及Mallat等提出的小波边缘检测方法。本文主要利用LOG算法实现图像的边缘检测。3.1LOG算法利用图像强度二阶导数的零交叉点来求边缘点的算法对噪声十分敏感。所以,希望在边缘增强前滤除噪声。为

6、此,Marr和Hildreth将高斯滤波和拉普拉斯边缘检测结合在一起,形成LOG(Laplacian of Gaussian,LOG)算法,也有人称之为拉普拉斯高斯算法。LOG算法理论是从生物视觉理论导出的方法。其基本思想是:首先在一定范围内做平滑滤波,然后利用差分算子检测在相应尺度上的边缘。滤波器的选择取决于两个因素,一是要求滤波器在空间上平稳,空间位置误差要小,二是要求平滑滤波器本身是带通滤波器,在其有限带通内是平稳的,即要求频域误差要小。由信号处理中的测不准原理知,与是矛盾的,达到测不准下限的滤波器是高斯滤波器。Marr和Hildreth提出的差分算子是各向同性的拉普拉斯二阶差分算子。L

7、OG边缘检测器的基本特征是:1、平滑滤波器是高斯滤波器;2、增强步骤采用二阶导数(二维拉普拉斯函数);3、边缘检测判据是二阶导数零交叉点并对应一阶导数的较大峰值。这种方法的特点是图像首先与高斯滤波器进行卷积,这一步既平滑了图像又降低了噪声,孤立的噪声点和较小的结构组织将波滤除。由于平滑会导致边缘的延展,因此边缘检测器只考虑那些具有局部梯度最大值的点为边缘点,这一点可以用二阶导数的零交叉点来实现。拉普拉斯函数用作二维二阶导数的近似,是因为它是一种无方向算子。为了避免检测出非显著边缘,应选择一阶导数大于某一阈值的零交叉点作为边缘点。LOG算子的输出h (x ,y)是通过卷积运算得到的: (3-1)

8、根据卷积求导法有: (3-2)其中: (3-3)称之为墨西哥草帽算子。如图2-1所示:是对视网膜神经节感受野的空间组织的近似, 可以看作由一个兴奋中心区和一个抑制性周边区组成, 中心区宽度为, 如图1(b) 所示。当取不同的值时, 则可以用LOG算子检测不同尺度下图像的强度变化, 小的滤波器(较小) 用于检测细节, 大的滤波器(较大) 用于检测轮廓(模糊的边缘) 。通常, 我们取1, 并且以=1为最小的滤波器, 此时W=2 23, 可用于检测非常精确的细节, 但同时对噪声的抑制作用减弱, 对于反差较小的区域也比较敏感。事实上, 边缘往往是在相邻像素之间产生, 也就是说, 最精确的细节应该在W2

9、时产生。此时, LinTran(&imgTemp, -1, 255); / 边缘细化 imgTemp.Thining(); / 第二次反色:得到最终结果 imgTemp.LinTran(pTo, -1, 255);其中细化的算法如下:voidCImgProcess:Thining() intnHeight = GetHeight(); intnWidth = GetWidthPixel(); /四个条件 BOOL bCondition1; BOOL bCondition2; BOOL bCondition3; BOOL bCondition4; /55相邻区域像素值 unsigned char

10、 neighbour55; inti, j; int m, n; BOOL bModified = TRUE; while(bModified) bModified = FALSE; CImgProcess pic = *this; pic.InitPixels(255); /清空目标图像 for(j=2; jnHeight-2; j+) for(i=2; inWidth-2; i+) bCondition1 = FALSE; bCondition2 = FALSE; bCondition3 = FALSE; bCondition4 = FALSE; BYTE data = GetGray(i

11、, j); if(data = 255) continue; / 获得当前点相邻的55区域内像素值,白色用0代表,黑色用1代表 for (m = 0;m 5;m+ ) for (n = 0;n 5;n+) neighbourmn = (GetGray(i + n - 2, j + m - 2) = 0); / neighbour /逐个判断条件。 /判断2=NZ(P1)= 2 &nCount=6) bCondition1 = TRUE; /判断Z0(P1)=1 nCount = 0; if (neighbour12 = 0 &neighbour11 = 1) nCount+; if (neig

12、hbour11 = 0 &neighbour21 = 1) nCount+; if (neighbour21 = 0 &neighbour31 = 1) nCount+; if (neighbour31 = 0 &neighbour32 = 1) nCount+; if (neighbour32 = 0 &neighbour33 = 1) nCount+; if (neighbour33 = 0 &neighbour23 = 1) nCount+; if (neighbour23 = 0 &neighbour13 = 1) nCount+; if (neighbour13 = 0 &neigh

13、bour12 = 1) nCount+; if (nCount = 1) bCondition2 = TRUE; /判断P2*P4*P8=0 or Z0(p2)!=1 if (neighbour12*neighbour21*neighbour23 = 0) bCondition3 = TRUE; else nCount = 0; if (neighbour02 = 0 &neighbour01 = 1) nCount+; if (neighbour01 = 0 &neighbour11 = 1) nCount+; if (neighbour11 = 0 &neighbour21 = 1) nC

14、ount+; if (neighbour21 = 0 &neighbour22 = 1) nCount+; if (neighbour22 = 0 &neighbour23 = 1) nCount+; if (neighbour23 = 0 &neighbour13 = 1) nCount+; if (neighbour13 = 0 &neighbour03 = 1) nCount+; if (neighbour03 = 0 &neighbour02 = 1) nCount+; if (nCount != 1) bCondition3 = TRUE; /判断P2*P4*P6=0 or Z0(p

15、4)!=1 if (neighbour12*neighbour21*neighbour32 = 0) bCondition4 = TRUE; else nCount = 0; if (neighbour11 = 0 &neighbour10 = 1) nCount+; if (neighbour10 = 0 &neighbour20 = 1) nCount+; if (neighbour20 = 0 &neighbour30 = 1) nCount+; if (neighbour30 = 0 &neighbour31 = 1) nCount+; if (neighbour31 = 0 &nei

16、ghbour32 = 1) nCount+; if (neighbour32 = 0 &neighbour22 = 1) nCount+; if (neighbour22 = 0 &neighbour12 = 1) nCount+; if (neighbour12 = 0 &neighbour11 = 1) nCount+; if (nCount != 1) bCondition4 = TRUE; if(bCondition1 & bCondition2 & bCondition3 & bCondition4) pic.SetPixel(i, j, RGB(255, 255, 255); bModified = TRUE; else pic.SetPixel(i, j, RGB(0, 0, 0); /for i /for j *this = pic; /while效果图如下图3-2-2,3-2-1为原图。3-2-1 原图3-2-2 实现效果图4.结束语本文对边检检测技术进行研究,主要研究了LOG算子,并且利用LOG算法实现图像的边缘检测。参考文献1韦春桃 程晓宇.LOG算子进行边缘检测的研究.桂林工学院学报,1999,19,No.2.2甘金来.图像边缘检测算法的比较研究.2005.

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1