ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:21.17KB ,
资源ID:3301768      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3301768.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(用于麦克风阵列的球面谐波分解.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

用于麦克风阵列的球面谐波分解.docx

1、用于麦克风阵列的球面谐波分解用于麦克风阵列的球面谐波分解摘要:随着麦克风阵列在室内声场分析、声场再现、语音通信中的广泛应用,球面谐波分解在阵列信号处理中的地位变得更加重要。针对球面阵列的球面谐波分解是近年发展起来的波束形成新技术,它还可以扩展到线阵和环形阵等其它阵形中。从球面傅里叶变换着手,在球面谐波域内对不同条件下波束形成算法的原理、性能及其在阵列信号处理中可能的应用进行了全面的综述。关键词:麦克风阵列;球面谐波;波束形成; 波达方向估计0引言球面谐波是波动方程在球坐标系下的解中关于角度的函数,它是球面傅里叶变换的基函数,不同阶次的谐波之间相互正交。球面谐波分解在麦克风阵列处理中的应用是基于

2、入射声场的传播与散射,由傅里叶声学原理1提出的,这类方法也称为球面谐波域阵列处理。基于球面谐波分解的波束形成就是首先通过球面傅里叶变换将入射信号的声压变换到球面谐波域内,然后对各阶次的谐波进行加权求和得到整个阵列的输出。Meyer和Elko2通过对声场进行球面谐波分解,得到一种简单、灵活、有效的波束形成器结构,输出波束的形状并不会随着方向的改变而变化。Abhayapala和Ward3将类似的阵列应用到高阶声场录音和重构中。Abhayapala4还将3D球面阵的分解方法扩展到环形阵中,进一步扩展了球面谐波在不同阵形中的应用范围。随着研究的深入,学者们对球面谐波的提取及球面谐波域波束形成进行了更详

3、细的阐述,提出了许多有效的算法。Rafely5曾针对远场窄带情况对球面阵的采样和波束形成进行了总结。本文结合新近出现的算法,从球面谐波的分解原理和提取方法出发,按照空间域波束形成的分类方法6,对球面远场窄带波束形成进行分类,并总结了针对近场源和宽带信号提出的新算法。同时也对比分析了球面谐波域中不同阵形波束形成算法的原理和性能,及其在麦克风阵列信号处理中的可能应用,以方便那些从事麦克风阵列应用研究的读者。1基础理论球面傅里叶变换是整个算法的基础,它实现了信号从阵元域到球面谐波域的变换,在实际工程应用中,通常利用采样的离散变换来代替连续的变换。本部分将对球面傅里叶变换和空间采样的规则进行介绍。1.

4、1球面傅里叶变换1.2空间采样此外,Vicente9提出了两种新的采样方法,将阵元分布在不同的圆环上,每个环可以构成一个子阵,并将圆环按照纬度排列。在保证满足奈奎斯特定理的前提下,增加阵元之间的距离,从而减少阵元的数目。新的方法能够保持较高的方向性和波束响应的对称性。2球面阵波束形成2.1远场窄带波束形成根据Van Veen和Buckly对传统波束形成的分类方法6,我们将球面阵远场窄带波束形成也分为三大类:固定波束形成、统计最优波束形成和多约束的最优波束形成。2.1.1固定波束形成2.1.2统计最优波束形成在球面谐波域内,统计最优波束形成与空间域类似,权值依赖于阵列接收数据的统计特性。其实,阵

5、列的输出不仅可以表示成球面谐波域的采样结果,也可以直接在空间域中表示,具有类似的表达形式。如式(6)所示。因此,可以将空间域中的统计最优算法扩展到球面谐波域中使用,例如,MVDR、LCMV、GSC等经典算法,并且在球面谐波域中可以减少运算量,提高运行效率10。2.1.3多约束最优波束形成多约束最优波束形成是指在保证期望波束的同时,可以对其它方向的信号或者相关的性能指标进行约束,最后得到一个最优化的权值,达到对波束进行优化的目的。Li和Duraswami11、Meyer和Elko12提出了权值优化的球面波束形成算法,引入白噪声增益作为性能约束条件,权值w是整个优化过程的结果,在一定条件下是最优的

6、。Rafely13提出了能够同时在空间域和球面谐波域中实现的多零陷算法,针对非对称的普通波束,在保证期望波束的同时可以对多个方向的干扰进行抑制,增强期望信号,并应用到室内脉冲响应的测量中。Shefeng Yan17将二阶锥化与波束形成相结合,在球面谐波域内将多约束的最优算法看成是凸优化的二阶锥化过程,权值和输出的波束是对多项性能指标优化后得到的最优结果。例如,鲁棒的最小旁瓣算法14,在保证期望方向的响应和主瓣宽度的同时,使得旁瓣的峰值最小。最优的模态波束形成15,它将多个性能参数约束考虑到一个优化过程中,试图从这些相关的参数中得到有效的最优解。与前面提到的算法不同的是,它可以动态地对干扰进行抑

7、制,可以应用到语音增强和去混响中。此外,该思想也可以应用到多波束形成算法16中,可以同时对多个期望的波束进行约束。2.2远场宽带波束形成球面阵的远场宽带波束形成,也可以分为频域和时域两类进行实现。结合频域的算法,先将宽带信号经过DFT变成窄带信号,然后在球面谐波域内计算各个频率的权值。同样,基于FIR滤波器的时域算法也可以扩展到球面谐波域内,Shefeng Yan17提出了一种在时域内实现球面谐波域宽带波束形成的算法,将权值的获取看成是滤波器设计,并带有多约束的最优化过程,得到的权值是多个指标优化后的最优解。在算法实现流程中,借鉴Meyer和Elko18的球面波束形成时域处理方法,将球面谐波的

8、实部与虚部分开作为球面傅里叶变换的基,在球面谐波域内得到实数信号,最后经过FIR波束合成模块得到波束响应。该算法有着比空间域宽带处理更小的计算量。此外,V. Tourbabin19提出的实权值波束形成算法可以看作是FIR实现的一种特例,只需要一组滤波器系数即可,它指出刚性球更适合用此类算法,并将算法性能和复权值算法进行比对。2.3近场波束形成上述算法都是基于远场假设的,但在实际应用,例如,手提电话中信源到阵元的距离变小,远场平面波的假设将不再成立,因为在波束响应中信号的相位和幅度可能会出现误差。Meyer和Elko20提出了近距离通话麦克风阵,它基于对近场源声场的球面谐波正交分解, 并通过不同

9、模态间的比值估计出信源的距离,加上角度估计可以对信源进行定位。Fisher和Rafely21也已经用阵列的阶数,信号频率和位置等参数定义了近场准则,并对波束响应随径向距离变化的情况进行了研究。最近,Fisher和Rafely22,23又将径向滤波器应用到实际的近场球面阵和实际语音信号中,在控制波束响应方向性能的基础上,试图提高阵列的径向性能。常用的滤波器有径向契比雪夫、径向V型滤波器等,分析它们的设计方法和性能,结果表明它们可以提高对不同距离干扰的抑制能力,具有不同的距离分辨力。3线阵和环形阵波束形成在进行球面谐波分解时,通常将球面阵作为第一选择,但是它要求阵元的位置必须严格正交,这会限制阵列

10、形状的灵活性。Kennedy和Abhayapala24,25课题组对球面谐波在线阵波束形成中的应用进行了研究。他们根据z轴上线阵波束的轴对称性,简化了波动方程的球面谐波解,并论证了近场和远场波束响应的等价性。通过径向变换、径向互惠关系等将近场宽带响应变换到远场中,利用成熟的远场算法设计相应的波束。Meyer和Elko26试图用环形阵去提取球面谐波,利用了x-y平面内的环形阵和原点处的一个阵元,这种阵列结构对于高度不变的2D声场分析比较有效,不能完全提取出3D场的全部谐波。Abhayapala4提出更适用于3D声场分解的阵列结构,阵列由一组互相平行的环形阵组成。在进行球面谐波分解的时候,根据波动

11、方程、勒让德函数和球面贝塞尔函数的性质,将环形阵分为位于x-y平面的、平行于x-y平面的,并在z轴上放置相应数目的阵元,最后将该混合结构应用到远场宽带波束形成中。4DOA估计球面谐波域内的高精度DOA估计主要针对用球面麦克风阵列观测相干和/或宽带源的情况。Teutsch27提出了球面阵子空间DOA估计的算法,思想类似于阵元域中的算法。接着,Teutsch28将球面谐波分解后得到的子波束应用到多个宽带信号源的检测和定位中,在定位过程中用到球面Esprit算法。Goossens和 Rogier29对上述的球面Esprit算法进行改进,它可以对方位角和俯仰角自动配对,并进行二维DOA估计,即使在相干

12、情况下,它的运算量更低性能也更好。Sun Haohai30等指出球面子空间Esprit算法在现实应用中存在的关键问题,例如,相干源和多个信源的定位问题等,并结合频率平滑、方向矢量扩展等技术来提高算法的性能,利用Eigenmike麦克风阵列进行测试。 Khaykin31在利用球面阵对相干源进行DOA估计时,在频域将频率平滑和MUSIC算法结合,并在实际环境中得到了比波束形成更好的性能。Li Xuan32等利用球面阵阵元的正交性,提出了球面MUSIC算法,与传统MUSIC、波束空间MUSIC以及很多改进算法相比,该算法有更好的估计精度。Sun Haohai33将子波束MVDR算法用到宽带相干源的定

13、位和提取中,在较精确地估计出DOA之后,通过计算TDOA可以确定信号的空间位置。Mabande和Sun Haohai34,35等人在室内环境中利用Eigenmike麦克风阵列,对基于子空间和基于波束形成的DOA估计算法的性能进行比对,包括子空间MUSIC,子空间ESPRIT和MVDR等算法,主要测试了不同算法对室内反射体的定位性能。5结语本文对球面谐波分解在麦克风阵列信号处理中的应用进行了系统的描述,内容涵盖球面谐波的获取、球面阵的空间采样等理论基础,以及波束的分类和权值的设计等核心部分。在此基础上,将球面阵远场窄带波束形成分为三大类:固定波束形成、统计最优波束形成和多约束最优波束形成,并归纳

14、整理了新近提出的处理近场和/或宽带源的方法。此外,还指出了在非球面阵中应用球面谐波分解时,对不同阵形的约束条件,总结了球面谐波分解在宽带相干源高精度DOA估计中的应用现状。参考文献:1WILLIAMS E G. Fourier acoustics: sound radiation and nearfield acoustical holography M. Cambridge: Academic Press, 1999.2MEYER J, ELKO G. A highly scalable spherical microphone array based on an orthonormal d

15、ecomposition of the soundfieldC. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2002.3ABHAYAPALA T D, WARD D B. Theory and design of high order sound field microphones using spherical microphone arrayC. IEEE International Conference on Acoustics, Speech, and Sign

16、al Processing (ICASSP), 2002.4ABHAYAPALA T D, GUPTA A. Spherical harmonic analysis of wavefields using multiple circular sensor arraysJ. IEEE Transactions on Audio, Speech, and Language Processin, 2010(6).5RAFAELY B. Spatial sampling and beamforming for spherical microphone arraysC. Hands-Free Speec

17、h Communication and Microphone Arrays(HSCMA), 2008.6VAN VEEN B D, BUCKLEY K M. Beamforming: A versatile approach to spatial filteringJ. IEEE ASSP Magazine, 1988(2).7RAFAELY B, WEISS B, BACHMAT E. Spatial aliasing in spherical microphone arraysJ.IEEE Transactions on Signal Processing, 2007(3).8RAFAEL

18、Y B. Analysis and design of spherical microphone arraysJ. IEEE Transactions on Speech and Audio Processing, 2005(1).9VICENTE L M. Adaptive array signal processing using the concentric ring array and the spherical arrayD.University of Missouri, 2009.10B RAFAELY, Y PELED, M AGMON, et al. Spherical mic

19、rophone array beamformingC. Speech Processing in Modern Communication: Challenges and Perspectives. Berlin, Germany: Springer, 2010.11LI ZHIYUN, DURAISWAMI R. Flexible and optimal design of spherical microphone arrays for beamformingJ. IEEE Transactions on Audio, Speech, and Language Processing, 200

20、7(2).12MEYER J, ELKO G W. Spherical microphone arrays for 3D sound recordingM. Audio Signal Processing for Next-Generation Multimedia Communication System. Boston: Kluwer Academic Publishers, 2004.13RAFAELY B. Spherical microphone array with multiple nulls for analysis of directional room impulse re

21、sponsesC. IEEE International Conference on Acoustics, Speech and Signal Processing(ICASSP), 2008.14SUN HAOHAI, YAN SHEFENG, PETER SVENSSON U. Robust minimum sidelobe beamforming for spherical microphone arraysJ. IEEE Transactions on Audio, Speech, and Language Processing, 2011(4).15YAN SHEFENG, SUN

22、HAOHAI, PETER SVENSSON U, et al. Optimal modal beamforming for spherical microphone arraysJ. IEEE Transactions on Audio, Speech, and Language Processing, 2011(2).16SUN HAOHAI, YAN SHEFENG, PETER SVENSSON U. Robust spherical microphone array beamforming with multi-beam-multi-null steering, and sidelo

23、be controlC. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2009.17YAN SHEFENG, SUN HAOHAI, MA XIAOCHUAN, et al. Time-domain implementation of broadband beamformer in spherical harmonics domainJ. IEEE Transactions on Audio, Speech, and Language Processing, 2011(5

24、).18ELKO G W, KUBLI R A, MEYER J. Audio system based on at least second-order eigenbeamP. United States Patent WO03/061336A1, Jul, 2003.19TOURBABIN V, AGMON M, RAFAELY B. Optimal real-weighted beamforming with application to linear and spherical arraysJ. IEEE Transactions on Audio, Speech, and Langu

25、age Processing, 2012(9).20MEYER J, ELKO G W. Position independent close-talking microphoneJ. Signal Processing, 2006(6).21FISHER E, RAFAELY B. The nearfield spherical microphone arrayC. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008.22FISHER E, RAFAELY B. Nea

26、r-field spherical microphone array for speechC. 2nd International Symposium on Ambisonics and Spherical Acoustics, 2010.23FISHER E, RAFAELY B. Near-field spherical microphone array processing with radial filteringJ. IEEE Transactions on Audio, Speech, and Language Processing, 2011(2).24KENNEDY R A,

27、ABHAYAPALA T D, WARD D B. Broadband nearfield beamforming using a radial beampattern transformationJ. IEEE Transactions on Signal Processing, 1998(8).25KENNEDY R A, WARD D B, ABHAYAPALA T D. Nearfield beamforming using radial reciprocityJ. IEEE Transactions on Signal Processing, 1999(1).26MEYER J, E

28、LKO G. Spherical harmonic modal beamforming for an augmented circular microphone arrayC. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008.27TEUTSCH H. Modal array signal processing: principles and applications of acoustic wavefield decompositionM. Berlin: Sprin

29、ger-Verlag, 2007.28TEUTSCH H, KELLERMANN W. Detection and localization of multiple wideband acoustic sources based on wavefield decomposition using spherical aperturesC IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2008.29GOOSSENS R, ROGIER H. Unitary spherical e

30、sprit:2D angle estimation with spherical arrays for scalar fieldsJ. IET Signal Processing, 2009(3).30SUN HAOHAI, TEUTSCH H, MABANDE E, et al. Robust localization of multiple sources in reverberant environments using EB-ESPRIT with spherical microphone arraysC. IEEE International Conference on Acoust

31、ics, Speech and Signal Processing (ICASSP), 2011.31KHAYKIN D, RAFAELY B. Coherent signals direction-of-arrival estimation using a spherical microphone array: frequency smoothing approachC. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), 2009.32LI XUAN, YAN SHEFENG, MA XIAOCHUAN, et al. Spherical harmonics music versus conventional musicJ. Applied Acoustics, 2011(9).33SUN HAOHAI, MABANDE E, KOWALCZYK K, et al. Joint DOA and TDOA estimation for 3D localization of reflective surfaces using eigenbeam MVDR a

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1