ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:183.51KB ,
资源ID:3287220      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3287220.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(烃源岩的定性评价.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

烃源岩的定性评价.docx

1、烃源岩的定性评价烃源岩地化特征评价烃源岩地化特征评价摘要: 烃源岩对应的英文为Source rock,从本意上讲,它应该既包括能生油的油源岩,也包括能生气的气源岩,但过去多将它译为生油岩。其中的重要原因可能在于国内早期的油气勘探主要瞄准着对油的勘探。因此,油气地球化学所关注和研究的对象主要是油而不是气。这可能是早期的有关专著和教材也多冠以“石油”而不是“油气”的原因所在。相应地,生油岩这一术语在地化文献中得到了相当广泛的沿用。随着我国对天然气重视程度的逐步、大幅提高,有关天然气的勘探和地球化学研究也越来越多,很多时候,需要区分油、气源岩。因此,本文中以烃源岩替代早期的生油岩来涵盖油源岩和气源岩

2、。关键词:机质的丰度;有机质的类型;有机质的成熟度。前言 烃源岩是控制油气藏形成与分布的关键性因素之一。确定有效烃源岩是含油气系统的基础。烃源岩评价涉及许多方面,虽然在不同勘探阶段以及不同的沉积盆地,评价重点也有所不同,但是总体上主要包括两大方面:(l)烃源岩的地球化学特征评价,如有机质的丰度、有机质的类型、有机质的成熟度;(2)烃源岩的生烃能力评价,如生烃强度、生烃量、排烃强度等。本人主要介绍烃源岩的地球化学特征评价方面:1.有机质的丰度 有机质丰度是指单位质量岩石中有机质的数量。在其它条件相近的前提下,岩石中有机质的含量(丰度)越高,其生烃能力越高。目前,衡量岩石中有机质的丰度所用的指标主

3、要有总有机碳(TOC)、氯仿沥青“A”、总烃和生烃势(或生烃潜量Pg,Pg=S1S2)。1.1有机质丰度指标1.1.1总有机碳(TOC,) 有机碳是指岩石中存在于有机质中的碳。它不包括碳酸盐岩、石墨中的无机碳。通常用占岩石重量的来表示。从原理上讲,岩石中有机质的量还应该包括H、O、N、S等所有存在于有机质中的元素的总量。但要实测各种有机元素的含量之后求和,并不是一件轻松、经济的工作。考虑到C元素一般占有机质的绝大部分,且含量相对稳定,故常用有机碳的含量来反映有机质的丰度。将有机碳的量转换为有机质的量,需要补偿其它有机元素的量,常用的方法是乘一校正系数K,即有机质K有机碳。不难理解,K值是随有机

4、质类型和演化程度而变化的量。Tissot等给出了经验的K值(表1.1)。表1.1 由有机碳含量计算有机质含量的转换系数(据Tissot,1984)演化阶段 干酪根类型 煤 IIIIII成岩作用 1.251.341.481.57深成作用 1.201.191.181.12 从分析原理来看,有机碳既包括占岩石有机质大部分的干酪根中的碳,也包括可溶有机质中的碳,但不包括已经从源岩中所排出的油气中的碳和虽然仍残留于岩石中,但分子量较小、因而挥发性较强的轻质油和天然气中的有机碳。因此,所测得的有机碳只能是残余有机碳。1.1.2氯仿沥青“A”()和总烃(HC,ppm) 氯仿沥青“A”是指用氯仿从沉积岩(物)

5、中溶解(抽提)出来的有机质。它反映的是沉积岩中可溶有机质的含量,通常用占岩石重量的来表示。严格地讲,它作为生烃(取决于有机质丰度、类型和成熟度)和排烃作用的综合结果,只能反映源岩中残余可溶有机质的丰度而不能反映总有机质的丰度。氯仿沥青中饱和烃和芳香烃之和称为总烃。通常用占岩石重量的百万分(ppm)做单位。显然,它反映的是源岩中烃类的丰度而不是总有机质的丰度。但在其它条件相近的前提下,二指标的值越高,所指示的有机质的丰度越高。因此,它们也常常被用作烃源岩评价时的丰度指标。不过,显而易见,这两项指标均无法反映源岩的生气能力。同时,在高过成熟阶段,由于液态产物裂解为气态产物,它也难以指示高过成熟源岩

6、的生油能力。还有必要指出的是,由于氯仿抽提及饱和烃、芳烃分离时的恒重过程,C14的烃类基本损失殆尽,两项指标实际上也未能反映源岩中的全部残油和残烃。也有学者认为(庞雄奇等,1993,1995),从本质上看,氯仿沥青“A”和总烃是一个残油、残烃量的指标,因此,其值高,可能不一定表明生烃条件好,反而可能指示源岩的排烃条件不好,即指示这类源岩对成藏的贡献可能有限。 1.1.3生烃势(S1S2,mgHC/g岩石) 对岩石用Rock Eval热解仪(第三章)分析得到的S1被称为残留烃,相当于岩石中已由有机质生成但尚未排出的残留烃(或称之为游离烃或热解烃),内涵上与氯仿沥青“A”和总烃有重叠,但比较富含轻

7、质组分而贫重质组分。分析所得的S2为裂解烃,本质上是岩石中能够生烃但尚未生烃的有机质,对应着不溶有机质中的可产烃部分。所以(S1S2)被称为“Genetic potential”(Tissot等,1978)。中文一般将它译为“生烃潜力”或者“生烃潜量”。考虑到“潜力”含有“能够但尚未实现的”意义,即从字面上理解,更容易将它与S2相联系,因此本书建议将“Genetic potential”译为生烃势。黄第藩等(1984)也曾在著名的“陆相有机质的演化和成烃机理”一书中将(S1S2)称为生油势。它包括源岩中已经生成的和潜在能生成的烃量之和,但不包括生成后已从源岩中排出的部分。可见,在其它条件相近的

8、前提下,两部分之和(S1S2)也随岩石中有机质含量的升高而增大。因此,也成为目前常用的评价源岩有机质丰度的指标,称为生烃势,单位为mgHC/g岩石。显然,它也会随着有机质生烃潜力的消耗和排烃过程而逐步降低。1.2烃源岩中有机质丰度评价 有机质丰度评价是烃源岩评价的重要组成部分。岩石中有机质的含量达到多少才能成为烃源岩,是有机质丰度评价的主要内容。 我国中新生代主要含油气盆地1080个样品数据编绘的有机碳含量频率图(图1.3)的研究表明(尚慧芸,1981),暗色泥质生油岩的有机碳含量下限值约为0.4%,较好的生油岩为1.0%。例如,华北第三系各组段有机碳含量频率图(图1.4)显示,上第三系明化镇

9、组及馆陶组为非生油岩层,其有机碳含量一般低于0.4%;下第三系东营组有机碳含量多数在0.5%左右,具有一定的生油能力;下第三系沙河街组大多数有机碳在1.5%左右,为该区主要生油层系。 黄第藩(1991)对我国主要陆相含油气盆地的有机质丰度进行了总结,结果表明,在陆相淡水半咸水沉积中,主力油源层的有机碳含量均在1.0%以上,平均值变化在1.22.3%之间,可高达2.6%以上;氯仿沥青“A”的含量均在0.1%以上,平均值变化在0.10.3%之间,烃含量均在410ppm以上,平均值大多变化在5501800ppm之间。总的来看,我国陆相主力油源岩是一套灰黑、灰色泥岩、页岩,所含碳酸盐极少。陆相生油岩的

10、有机质丰度,特别是烃含量不低,构成了陆相石油生成的良好的物质基础。根据我国勘探实践,黄第藩提出了适用我国陆相含油气盆地的烃源岩评价标准(黄第藩等,1984)。表1.5是在黄第藩标准基础上修订后由中国石油天然气总公司1995年发布的行业标准,适用淡水半咸水湖相沉积的生油岩,海相泥岩也可参照此标准评价。对一般盐湖相沉积,因具有机碳含量较低,而烃含量不低,评价标准稍有不同。 煤系地层因有机质类型较差,相应的丰度评价标准有明显的提高(黄第藩等,1996,陈建平等,1997)。煤系泥岩(TOC6%)与一般湖相泥岩相比有机质以陆生植物为主,类脂组含量低,富碳贫氢,虽然有机碳含量高,但生烃潜力低;较高的有机

11、质丰度也使其对可溶有机质的吸附能力比一般泥岩强;单位有机碳的生烃潜力低,但单位岩石的生烃潜力又较高,煤系泥岩的这些基本特点决定了其评价标准(表13-3)与泥岩有所不同。表1.5为主要依据热解生烃潜量和氢指数给出的煤系炭质泥岩(6%TOC40%)评价标准。 表1.5陆相烃源岩有机质丰度评价指标(SY/T 5735-1995) 指标 湖盆水体类型 非生油岩 生油岩类型 差 中等 好 最好 TOC(wt%)淡水半咸水 0.61.01.02.02.0咸水超咸水 0.20.20.40.40.60.60.80.8“A”(wt%)0.0500.1000.1000.2000.200HC(wt10-6)2005

12、0050010001000(S1+S2)(mg/g岩石)62020注:表中评价指标适用于成熟度较低(Ro=0.5%0.7%)烃源岩的评价,当热演化程度高时,由于油气大量排出以及排烃程度不同,导致上列有机质丰度指标失真,应进行恢复后评价或适当降低评价标准。 2.有机质的类型 由于不同来源、组成的有机质成烃潜力有很大的差别(第五章),因此,要客观认识烃源岩的成烃能力和性质,仅仅评价有机质的丰度是不够的,还必需对有机质的类型进行评价。有机质(干酪根)类型是衡量有机质产烃能力的参数,同时也决定了产物是以油为主,还是以气为主。有机质的类型既可以由不溶有机质的组成特征来反映,也可以由其产物可溶有机质及其中

13、烃类的特征来反映。2.1据有机质(干酪根)的显微组分组成鉴别有机质的类型 不同光学方法在研究显微组分确定类型上各有特色和长处: 透射光法(transmitted light)来源于孢粉研究。它对鉴定具结构的类脂-壳质组如藻类、孢子、花粉、角质体等是很有效的。无定型有机质在投射光下没有清晰的轮廓和形状,难以分出是富氢无定型、还是贫氢无定型。 反射光法(reflected light)来源于煤岩石学研究,它既可观测生油岩的光片,他可观测干酪根的光片。对于区分腐殖型有机质十分有效,尤其可区分具一定生油气潜力的镜质组和不具备生油潜力的惰质组及沉积有机质。 荧光(fluorescent light)分析

14、和荧光光谱对于鉴别脂质组,尤其对于区分富氢无定型和贫氢无定型具有特殊作用。此外,用荧光还可辨认出次生的脂质体-沥青渗出体,这对煤成油研究很有意义。 干酪根是各种显微组分的混合物,因此根据各种显微组分的相对比例,可将跟老根分成相应的种类。2.2据岩石(或干酪根)的Rock-Eval热解特征划分有机质的类型无论是元素分析还是显微组分分析都需要制备干酪根,这一过程繁杂费时,利用Rock Eval烃源岩评价仪所得到的热解三分资料可快速经济地直接利用少量岩石获得许多参数(这项分析也可以对干酪根进行),其中不少包含有烃源岩中有机质类型的信息。由该项分析所得到直接参数有: S1:游离烃(mgHC/g岩石),

15、为升温过程中300以前热蒸发出来的已经存在于源岩中的烃类产物; S2:裂解烃(mgHC/g岩石),为300500升温过程有机质裂解出来的烃类产物,反映干酪根的剩余成烃潜力;S3:(mg CO2/g岩石)有机质热解过程中CO2的含量,反映了有机质含氧量的多少; Tmax:最大热解峰温(),为热解产烃速率最高时的温度,对应着S2峰的峰温。 由此可以计算得到的参数: 氢指数(HI ,mgHC/gTOC):S2 /TOC; 氧指数(OI, mg CO2/gTOC):S3/TOC; 烃指数(HCI ,mgHC/gTOC):S1/TOC; 生烃势(文献中常称为生油潜力): S1S2,(mgHC/g岩石);

16、 产烃指数:S1/(S1+S2)母质类型指数:S2/S3 不难理解,在物理意义上,氢指数、氧指数分别与H/C、O/C原子比相近。因此,对成熟度较低的源岩而言,HI能较好地反映有机质生烃能力的高低,母质类型指数也可反映有机质氢、氧的相对富集程度,因而可成为良好的判识有机质类型的指标。事实上,这些参数已成为目前油田生产实践中最常用的判识有机质类型的指标之一。图1.5为以氢指数氧指数关系图按三类四型方案划分有机质类型的图解。黄第藩等(1984)提出的判识有机质类型的X型图解及相应的分类标准主要就是依据氢指数及母质类型指数。2.3依据红外光谱(官能团)特征划分有机质的类型 有机质的红外谱带可以分为脂族

17、基团、芳香基团和含氧基团三大类。依据这些基团(谱带)的强度,可以选择许多比值来表征有机质的类型。石油天然气总公司1995年颁布的行业标准中就有由红外参数判识有机质类型的方案 。(图2.2)表1.6红外光谱陆相烃源岩有机质类型划分表(SY/T 5735-1995)吸光度比 1 2 1 2 2920cm-1/1600cm-1 4.34.31.61.60.51.001.000.400.400.150.152.4据干酪根的稳定碳同位素组成(13C)判识干酪根的类型 不同来源、不同环境中发育的生物具有不同的稳定碳同位素组成(13C)。干酪根作为生物有机质的演化产物,应该继承原始有机质的特征。因此,由干酪

18、根的碳同位素组成应该可以反映其有机质的来源及有机质的类型。 有关碳同位素分布的研究成果表明,由于生物分馏作用(生物对轻碳同位素的选择性优先利用),生物中的碳同位素明显较其利用的CO2偏轻;由于陆相生物所用大气碳源 (13C=7)轻于海相生物所用海洋水中的碳源 (13C=0),陆生植物与海洋水生生物的碳同位素值差异明显,陆生植物的13C分布范围为-10-37(王大锐,2002),典型值-24-34(郑永飞,2000);水生生物(海洋)为-4-28%,湖生生物比海洋生物的13C偏负10左右(表2.3)。同时,同一种生物体中,类脂化合物往往比较富含轻碳同位素。总体上讲,相同条件下,水生生物较陆生生物

19、富集轻碳同位素,类脂化合物较其它组分富集轻碳同位素。因此,较轻的干酪根碳同位素组成一般反映较高的水生生物贡献和较多的类脂化合物含量,即对应着较好的有机质类型。表2.4列出了代表性的由干酪根的碳同位素组成鉴别干酪根类型的方案,其中第三列为1995年发布的石油行业标准。表2.3 现代海洋、湖泊和陆地各种生物中碳同位素(13C,)(黄汝昌,1997)环境 高等植物 植物 浮游植物 植物类脂组 藻类 浮游生物 陆相 -21.6-26.7-21.0-30.0-30-28.7-32-27-32-27.6-32.6海相 -9.3-15.8-10.0-20.0-15-20-17.8-22-17-28-18.2

20、-28.5表2.4 陆相干酪根的13C() 与其类型的关系三分法(王大锐,2002) 黄第藩(1991)SY/T 5735-1995典型腐泥型 -28.030.2 -27.029.3 -25.527.2 -21.026.0 标准腐泥型 1 -28.231.0含腐殖腐殖型 2 -27.528.2中间型或混合型 -26.0-27.5含腐泥的腐殖型 1 -24.5-26.0标准腐殖型 2 -20.0-24.5-22.52.5据干酪根的热失重特征判识干酪根的类型 干酪根在受热过程中会发生裂解产生挥发性的产物,因此残余干酪根的重量会随着受热温度的升高而逐渐减少。热失重即是指受热前干酪根的重量受热后干酪根

21、的重量。不同的类型的干酪根由于产烃潜力不同,因而失重量也会不同。显然,对成熟度相近的样品,干酪根的类型越好(产烃潜力越大),相同条件下的失重量越大,即各类干酪根的热失重量顺序为IIIIII型。这三类干酪根的最大失重量分别可达到干酪根原始重量的80%,50%和30左右。2.6据可溶沥青的特征识别有机质类型 2.6.1氯仿沥青“A”及其族组成 氯仿沥青“A”是各种烃类和非烃类的混合物,出于研究的需要通常将其进一步分离成饱和烃、芳香烃、非烃和沥青质4个族组分。不同类型干酪根所生成的氯仿沥青“A”的族组成存在一定的差异,型干酪根的氯仿抽提物中含有更多的饱和烃;同时,由于藻类等水生生物的正构烷烃一般以较

22、低碳数(3204040606070207080生物标志物 5(C27+C28+C29)=15-C27 %5-C29 %5-C27/5C29552.0553525352.01.2352035451.20.8455513C非烃13芳烃13饱和烃 如果泥岩受到运移来烃类的浸染,则13C干酪根与13C沥青“A”远背离上述关系,使得13C沥青“A”所应代表的母质类型信息失去意义。2.6.3单体烃同位素组成 单体烃同位素是指原油或沥青中单一烃类化合物碳同位素。由GC-C-MS (气相色谱氧化燃烧炉同位素质谱)或称在线同位素分析仪完成。该技术使液态石油烃的稳定碳同位素研究与天然气中C1C4、CO2的碳同位素

23、分析一样,进入了分子级水平。单体烃同位素分析仪,于上世纪80年代初实现商品化,我国90年代初引入。经过20余年的发展,单体烃同位素研究已经取了长足进步,可以测定正构组分、异构组分及生物标志化合物。但总的来看,还属于新兴技术,对单体烃的地球化意义认识还不够深入,许多理论问题尚未明晰。正构组分单体烃碳同位素有随分子量增加而变烃的趋势(鹿洪友等,2003;耿安松等,1999;谢文彦等,2004)。用正构组分的正构组分的单体烃同分布可以区分油的来源。2.6.4据生物标记化合物分布特征判识有机质类型 关于生物标记化合物的基本概念及其地质意义,第十章已做了较为详细的介绍。饱和烃色谱(GC)、色谱质谱(GC

24、-MS)技术已是研究原油和岩石抽提沥青中生物标记化合物的常规手段。色谱可以提供有机质组成全貌图,色谱质谱可对其中的细节进行分辩,二者的结合可以提供大量的信息,对于揭示石油和沥青的母质类型、演化程度、经历的次生变化及原油的混源情况有重要作用,这些信息在油油对比、油源对比,研究沉积环境等有很大用途。这里主要介绍它在识别母质类型方面的应用。 另一个应用更为广泛的判识有机质类型的生标指标是依据C27、C28、C29甾烷的相对组成,它可以区分不同源岩的石油或相同源岩不同有机相的原油(Peters and Moldowan,1995),这主要是基于它们在来源上存在差异。C27甾烷主要来源于水生生物,而C2

25、9甾烷则主要来源于高等植物。这对我国陆相盆地可能更适用。而对海相生油,尤其是高等植物尚未大量出现的泥盆纪以前的海相原油中也存在丰富的C29甾烷则不好解释(Peters and Moldowan,1995)。针对我国的情况曾宪章等(1989)提出20R-C27、C28、C29三种生物构型甾烷来区分母质类型(图2.6)。从理论上讲,使用四种异构体之和更合理。但实际上在质谱图C27、C28的(除20R之外的)另外三种构型有时存在与其化合物共逸现象,易受干扰。生物构型的C27、C28、C29甾烷具有相同的热演化速率,这使它们的相对含量不受或很少受成熟度的影响,故能够反映原始母质中C27、C28、C29

26、甾烷的比例,这是判识有机质类型的众多指标中,受成熟度影响较小的少数几个指标之一。3.有机质的成熟度 油气虽然是由有机质生成的,但有机质并不等于油气。从有机质到油气需要经过一系列的变化。衡量这种变化程度(有机质向油气转化程度)的参数为成熟度指标,这方面的研究即为有机质的成熟度评价。从原理上讲,无论是成烃母质,还是其产物,只要在成熟演化过程中体现出规律性的变化,反映这种变化的参数即可成为成熟度指标。因此,在第八章中介绍的反映生烃母质干酪根演变特征的元素组成的变化、官能团构成的变化、自由基含量的变化、颜色及荧光性的变化、热失重的变化、碳同位素组成的变化、镜质体反射率的变化以及反映热解产物演化的可溶有

27、机质的含量及组成、烃类的含量及组成均可成为成熟度指标。此外,生物标记化合物中的生物标记化合物异构化参数、奇偶优势参数等等也可以成为成熟度指标。3.1镜质体反射率(Ro)作为成熟度指标 镜质体反射率(Ro)作为成熟度指标的原理已在第八章中介绍。由于镜质体并非十分有利的成烃母质,Ro的增大与烃类的生成并没有直接的联系。但由于镜质体反射率随热演化程度的升高而稳定增大,并具有相对广泛、稳定的可比性,使Ro成为目前应用最为广泛、最为权威的成熟度指标。表3.1列出了我国石油行业1995年颁布的Ro与有机质演化阶段(熟度)的关系。表3.1陆相烃源岩有机质成烃演化阶段划分及判别指标(据SY/T5735-1995简化)演化阶段 Ro/%孢粉颜色指数SCITmax/ H/C原子比 孢子体显微荧光Q孢粉(干酪根)颜色 生物标志化合物 古地温 T/ 油气性质 及产状 -C2920S/(S+R)C29/(+)未成熟 0.52.01.611.4浅黄色 0.205060生物甲烷未成熟油、凝析油 低成熟 0.50.72.03.04354401.61.21.42.0黄色 0.200.400.200.406090低成熟重质油、凝析油 成熟 0.71.33.04.54404501.2

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1