ImageVerifierCode 换一换
格式:DOCX , 页数:16 ,大小:21.36KB ,
资源ID:3274555      下载积分:2 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3274555.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(二重积分变量代换推广至三重积分的证明及应用.docx)为本站会员(b****6)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

二重积分变量代换推广至三重积分的证明及应用.docx

1、二重积分变量代换推广至三重积分的证明及应用 二重积分变量代换推广至三重积分的证明及应用篇一:二重积分变量代换推广至三重积分的证明及应用 二重积分变量代换推广至三重积分的证明及应用 作者:丁月明 指导老师:浦和平 关键词:变量代换 三重积分 摘要:由课本上对二重积分变量代换的简介,我们可以看出此方法在某些情况下简化了积分运算,而在三重积分中是否也存在此类变量代换呢,本文将把变量代换推广至三重积分,并给出其存在性的证明,和具体应用。 一对存在性的证明 记F?u,v,w?f(x(u,v,w),y(u,v,w),z(u,v,w)F于有界集Duv连续,F必一致连续, 即?0,?0对?u1,v1?,?u2

2、,v2?Duv,?F?u1,v1,w1?F?u2,v2,w2?成立。 由积分中值定理,得 ?F?u,v,w?Jdudvdw?f?x,y,z?dxdydz ?FJdudvdw?fdxdydz? i?1?diDi?m ?F?i,?i,?i?Jdudvdw?f?i,?i,?i?Di i?1 mm? ?(F?i,?i,?i?f?i,?i,?i?)Di i?1 Di?Jdudvdw,由于Di是di的值域,?i,i,i?di,使得 di? ?i?x?i,?i,?i,?i?y?i,?i,?i,?i?z?i,?i,?i存在, F?i,?i,?i?fi,i,iDi?F?u1,v1,w1?F?u2,v2,w2?

3、? ?Di?Dxyz,?0,? 0有 ?f?x,y,z?dxdydz?F?u,v,w?Jdudvdw 二变换方法的推导 1从几何角度的证明 存在三个交线互不平行的曲面f(x,y,z)=u0,g(x,y,z)=v0,q(x,y,z)=w0,三个曲面簇f(x,y,z)=u,g(x,y,z)=v,q(x,y,z)=w 交成空间曲面网构成新的坐标,而体积元为一个交点处,三条交线弧微元构成的空间的体积。 以u方向为例求弧微元, su?s?u0u1?u00?u?u?ru.?u由此可得ds? ?0u1?uurdu,类似的可以得出v,w方向的弧微元 rvrw?dudvdw?x,y,z?dudvdw?u,v,w

4、 于是体积微元为 dV?dsudsvdsw?ru 2用代数方法证明 ?x?x000?y在坐标x,y,z下有向量?0y00?,体积微元为向量偏导数微元的混合积 ?z?00z0? ?dxdydz?, 又,有u,v,w为x,y,z的参数,于是 ?x?c11c12c13?u?y?c21c22c23?v? ?z?c31c32c33?w?c11c12 在 c21c13c22c23?0的情况下,定u,v,w为一组基 c31c32c33 体积微元为 ?x ?udx00?ydxdydz?0dy0?u00dz?z ?u?x?v?y?v?z?v?x?w?ydudvdw ?w?z?w ?x,y,z?dudvdw?Jd

5、udvdw ?u,v,w 证毕 如,常见坐标系柱坐标的变换 x?y?u2 z?v y?wx x?pcos? y?psin?x?y?pz?vy?w?tan?x ?tg?1w z?z ?dxdydz?pdpd?dz 三应用举例 2 ?x2y2z2?1,求曲面?2?2?2?ax(a1,b1,c1)所围区域体积, bc?a x?apsin?cos? y?bsin?cos? 令z?cpcos? 又J?abcpsin?d?d?dp,可得 ? 2 ?2V?abc?d?sin?d?20?a2sin?cos?0p2dp 2x?3y?z?02x?3y?z?3 2,求又曲面x?y?z?1和x?y?z?4所围区域体积

6、 4x?y?2z?24x?y?2z?0 2x?3y?z?u 设曲面簇x?y?z?v 4x?y?2z?w J=?x,y,z?1?0 ?u,v,w5 1118?3?3?2? ?05553可做变换 V?dxdxydz?0?21?4 x2?y2x2?y2 ,z?,xy?a2,xy?b2,y?x,y?x所围区域体积。 3,求曲面z?mn令u?zy ,v?xy,w?22x?yx 2w v?1?J?0?w? 2w?w?1?1?1?v?w?u?w?uv?1?2?w?w?w? 1b2?1m21?xyzdxdydz?1udu?2v3dv?w?3?dwa?2nww?V2 1?11?81?4?22?2?2?b?a?1

7、?22?4ln?32?mn? 4,求积分 令,2 ?xdxdydz,受曲面z?ay,z?by,z?x,z?x,z?h限制 22 u? x? zz,v?,w?z2yxw,y?z?wvw v20J?2u02?w ? 32v2u232 ?1b11h7 V?xdxdydz?w2?4dv?3?va20vu2,5,55 211?h3?3?27?2 5,求受曲面z?x?y,z?2(x?y),xy?a,xy?2a,x?2y,2x?y限制的体积V 令u?222222vzx,v?xy,w? x?y?z?u(vw?) 22x?yywJ?vv?222w 22a2 1aV?du?2vv94(?)dw?a1 222w24

8、2 xyz?yzxyzxyz6,求受曲面?ln,x=0,z=0?0,?1限制的体积V。 bcabcabc?ab 令v?we?w则曲面的变换为 xyzxy?1?w?1,?0?u?w,x?0?u?0,z?0?v?w abcab 0uw,we 故体积为 ?w?v?w,0w1 V?dw?du?001w?11?abcdv?5abc? we?w?e3?w 参考文献工科数学分析马知恩 吉米多维奇习题集篇二:3二重积分的变量代换 3 二重积分的变量代换 也有一种情形,函数f在D上可积,但无论采用哪种积分次序都“算不出来”。 例:I? ?(x ?eD 2 ?y2) dxdy,D=?(x,y)|x2?y2?a2?

9、 ?y2) 222 在D上几乎处处连续,有界函数(x,y)|x?y?a=?D是零测度集,f?R 分析:f(x,y)=e?(x (D) 2 ? I?dx? ?a a a2?x2 ?a2?x e2 ?(x2?y2) dy=?e ?a a ?x2 dx? ?y2 a2?x2 ?a2?x e?ydy 2 ?x2 2 orI? ? a ?a dy? a2?x2 ?a2?x2 e ?(x2?y2) dx=?e ?a a dy? a2?x2 ?a2?x2 edx 计算不出来!f?R(D),但化为二次积分后算不出来。说明我们的计算方法有问题。因此,我们有必要寻找 更有效的计算二重积分的方法。联想到定积分的计算

10、方法,换元法、分部积分法、N-L公式等,特别是换元法,是一种化难为易的有效方法。在二重积分中能否利用这种化难为易的思想呢?是可以的。这就是我们今天给大家要讲解的,二重积分的变量代换,利用这种方法,就可以解决上面的计算问题。在定积分中,换元积分法对简化定积分计算起着重要的作用。对于二重积分也有相应的换元公式,用于简化积分区域或被积函数。 1 极坐标交换 ?2。) 先介绍极坐标变换:x?rcos?,y?rsin?(0?r?,0 设D是R中的有界闭区域,且?D是R中的零测度集;再设f在D上几乎处处连续的有界函数,根据上节内容可知:f?R(D) 2 2 ?f(x,y)dxdy有意义的;它的值不因对区域

11、D的分割方式不同而变化。 D 在直角坐标系中,我们是以平行于x轴和y轴的两族直线来分划区域D为一系列小矩形的,在极坐标系 中,若用极坐标网分割,即用r=常数的一族同心圆以及=常数的一族过极点的射线来分划D(如左图示),得出若干个小块?ij,这时小块的面积若极为?ij,(xi,jy则Rieman和为ji?)注意到 ?f(x,y)? i j i?1 j?1 nm ij , 111 ?ij=(rj?rj)2?i?rj2?i=(2rj?rj)?rj?i=rj?rj?i?rj2?i 222 易见,当?i,?rj充分小时,?ij可近似地看成一个矩形,边长分割为:?rj和rj?i,即 ?ij?rj?rj?i

12、,若有Rieman和 ?f(x,y)? i j i?1 j?1 nm ij 中以 rj?rj?i代替?ij,并按极坐标交换:x?rcos?,y?rsin? n m ,xi?rjco?si,y?rjs?inji? i?1 n m n ?f(x,y)? i j j?1i j ij m ij ? i?1 ?f(rcos?,rsin?)r?r?。当分割的精度 j i j i j j i j?1 0是,由上面分析知: ?f(x,y)? i?1 j?1 ?f(x,y)dxdy。 D记 dij?max|x?y|, d? (x,y)?ij 0?i?n,0?j?m maxd,lim?f(x,y)?=?f(rco

13、s?,rsin?)r?r? ij d?0 i j ij nmnm jijijji i?1j?1i?1j?1 即 ?f(x,y)dxdy=?f(rcos?,rsin?)rdrd? 直角坐标下的二重积分化为极坐标系下的二重积分的公式) D D 在x=rcos?,y=rsin? 交换下,调和函数f(x,y)?f(rcos?,rsin?),dxdy?rdrd?, 区域D?D 说明:注意, ?f虽经极坐标交换,但又变成极坐标系下二重积分,这是如何计算极坐标系下二重 D 积分,在极坐标下,二重积分一样可以化为二次积分来计算,下面分情况讨论之: 情形1若D=?(r,?)|r1(?),r2(?)为?1,?2上

14、的连续函数,则称1(?)?r?r2(?),?1?2?, r 之为?型区域(如左图)。这时,类似于上节的x-y-型区域的取法,可将之化为下面形式: ? D f(rcos?,rsin?)rdrd?=?d? ?1 ?2r2(?) r1(?) f(rcos?,rsin?)rdr 情形2若D=?(r,?)|?1(r)?2(r),r,1,r2 (r-型区域)1?r?r2?,其中?1(r),?2(r)?Cr 此时有 ? D f(rcos?,rsin?)rdrd?=?dr? r1 r2?2(r) ?1(r) f(rcos?,rsin?)rd? 情形3 若极点O是积分区域的内点,则交换后的区域为:D=?(r,?

15、)|0?r?r(?),0?2? 此处r=r(?)是D的边界曲线, ? D f(rcos?,rsin?)rdrd?=?d? 2?r(?) f(rcos?,rsin?)rdr 情形4若积分区域的边界曲线r=r(?)通过极点O时,应先求出极径,继使r(?)=0的两个角度?1, ?2,此时有: ? D f(rcos?,rsin?)rdrd?=?d? ?1 ?2 r(?) f(rcos?,rsin?)rdr 2 2 何时使用极坐标变换?当积分区域是圆域或是圆域的部分或被积函数的形式为f(x?y)时,采用极坐标交换来计算往往简便得多。 ?(x 例1 I?e D 2 ?y2) dxdy,D=?(x,y)|x

16、2?y2?a2? 例2 I? D dxdy 1?x2?y2,D为圆域 x2?y2? 14 =Rx所割下的立体(成为维维安尼(Viviani)体)的 例3求球面体积。 x2?y2?z2?R2 被圆柱面 x2?y2例4有一个形状为旋转抛物面 z?x2?y2 的容器内,已经盛 3 8?cm3,的溶液,现又倒进120?cm的溶液, 问液面比原来的液面升高多少cm? 2 二重积分的一般变量替换 计算二重积分,除了引用上面讲的极坐标这一特殊交换外,有时还要取一般的变量替换。 u,v),y?y(u,v)(*)定理 设D?R有界闭区域,f?R(D),设x?x(。通过(*)把D变为D, 在D上有关于x,y的连续

17、偏导数,并且交换(*)是一对一的,又设J? 2 ?(x,y) ?0(在D内不为0),则 ?(u,v) ? D f(x,y)dxdy=?f(x(u,v),y(u,v)| D ?(x,y) |dudv。 ?(u,v) 说明: 在定理中,假设J0,但有时会遇到这种情形。交换行列式在区域内个别点上等于0。或只在 ? 此时一小区域上等于0而在其他点上非0,此时上述结论能成立。特例:x?rcos?,y?rsin ?(x,y)cos? =|?(r,?)sin? ?rsin? |?r,根据 有?f(x,y)dxdy=?f(rcos?,rsin?)rdxdy;在多个具体问 rcos?DD 题中,选择交换公式的依

18、据有两条:(1)使交换的函数容易积分;(2)使得积分限容易安排。 例1 x2y2z2 求椭球体2?2?2?1的体积 abc 22 求出内抛物线y?px,y?qx(0?p?q)及双曲线 xy?a,xy?b (0?a?b) 所围区域 例2 D的面积。篇三:二、三重积分中值定理的证明与应用 数学分析自主研究课题: 二、三重积分中值定理的证明和应用 摘要:本报告探究的是由积分第一中值定理和推广的积分第一中值定理引伸出的推广形式的二重积分中值定理和二、三重积分中值定理的证明及其相关应用。 关键词:积分第一中值定理,推广形式的二重积分中值定理,二、三重积分中值定理 一、引言 在数学分析的学习过程中我们已经

19、详细了解了的积分第一中值定理(一重积分中值定理)及其证明和应用,而对二、三重积分中值定理并没有给出详细的证明和应用,所以本报告将详细的对其作出证明和说明其简单的应用. 二、积分第一中值定理(一重积分中值定理) (积分第一中值定理)若f在a,b上连续,则至少存在一点a,b,使得 ?b af(x)dx?f(?)(b?a).和(推广形式的积分第一中值定理)若f和g都在a,b上连续,且g(x)在a,b上不变号,则至少存在一点?a,b,使得 ?b af(x)g(x)dx?f(?)?g(x)dx ab ?1时,即为积分第一中值定理) (明显当g(x) 三、推导二、三重积分中值定理及证明 由积分第一中值定理

20、我们类似的推导出 二重积分中值定理:若f(x,y)在有界闭区域D上连续,则存 ?D,使得 在(?,?) ?f(x,y)d?f(?,?)S DD, 这里SD是区域D的面积. 证明:由于f(x,y)在有界闭区域D上连续,SD为这个区域的面积.存在最大值M和最小值m,得 mf(x,y)M,(x,y)?D, 使用积分不等式性质得 mSD?f(x,y)d?MSD , D 即 m1 SDD?f(x,y)d?M. ?D,使 再由连续函数的介值性,至少存在一点(?,?) f(?,?)?1 SD?f(x,y)d?, D 即?f(x,y)d?f(?,?)SD D由此定理得证. 那对于二重积分是否也存在 推广形式的

21、二重积分中值定理:若f(x,y)在有界闭区域D上 ?D,连续,g(x,y)在D上可积且不变号,则存在一点(?,?) 使得 ?f(x,y)g(x,y)d?f(?,?)?g(x,y)d? DD 显然定理是存在的,下面我们就来证明一下 证明:由于f(x,y)在有界闭区域D上连续,所以f(x,y)在D上存在最大值M和最小值m,有 mf(x,y)M,(x,y)?D, 又g(x,y)在D上不变号,当g(x,y)0时,有 mg(x,y)f(x,y)?g(x,y)Mg(x,y),(x,y)?D. 由二重积分的比较性质,可得 m?g(x,y)d?f(x,y)g(x,y)d?M?g(x,y)d? DDD 当?g(

22、x,y)d?0时,由上式知?f(x,y)g(x,y)d?0, DD ?D,都可使 这时对任意的(?,?) ?f(x,y)g(x,y)d?f(?,?)?g(x,y)d?成立. DD 当?g(x,y)d?0时,由上式得 Dm?f(x,y)g(x,y)d?D ?g(x,y)d? D?M,由闭区域连续函数的介值定理 ?D,使 知,至少存在一点(?,?) f(?,?)?f(x,y)g(x,y)d?D ?g(x,y)d? D, f(x,y)g(x,y)d?f(?,?)g(x,y)d?即 . DD 同理可证当g(x,y)?f(x,y)g(x,y)d?f(?,?)?g(x,y)d?也成立. DD 由此,定理得

23、证. 特别的,当g(x,y)?1时,即为二重积分中值定理. 三重积分中值定理:若f(x,y,z)在三维空间可求体积的有界闭区域V上连续,则存在(?,?,?)?V,使得 ?f(x,y,z)dV?f(?,?,?)Vv, V 这里Vv是积分区域V的体积. 证明:由于f(x,y,z)在三维空间可求体积的有界闭区域V上连续,Vv为这个区域的体积.存在最大值M和最小值m,有mf(x,y,z)M, (x,y,z)?V. 使用积分不等式性质得mVv?f(x,y,z)dVMVv , V 1即mVv?f(x,y,z)dVM. 再由连续函数的介值性,至少存在一点(?,?,?)?V使 1f(?,?,?)?Vv?f(x

24、,y,z)dV, V 即?f(x,y,z)dV?f(?,?,?)Vv. V 由此定理得证. 同样的,对于三重积分中值定理,也有推广形式的三重积分中值定理,这里不详细证明了. 四、二、三重积分中值定理的应用 1.设f(x,y)(f(x,y,z))有界闭区域D(V)上的连续函数,?D(?V)是包含定点P0(x0,y0)(P0(x0,y0,z0))的D(V)的有界闭子 域,由积分中值定理得,存在(?,?)?D(?,?,?)?V),使?f(x,y)d?f(?,?)S?D ?D (?f(x,y,z)dV?f(?,?,?)V?v) ?V 其中显然(?,?)?D((?,?,?)?V),SD(VD)是区域D(V)的面积(体积).当?D(?V)的区域d趋于零,便有 limd?01S?D?f(x,y)d?limf(?,?)?f(x,y). ?Dd?000

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1