1、江西教师招聘小学数学考试大纲第一部分 学科专业基础一、函数的极限和连续(一)考试内容函数及其性质;初等函数;数列的极限和函数的极限;极限的性质;无穷小量和无穷大量;两个重要极限;函数的连续与间断;初等函数的连续性;(二)考试要求1理解函数的概念;掌握函数的表示法及函数的性质。2了解函数的几种简单性质,会判断函数的有界性、奇偶性。掌握基本初等函数及其图形的有关知识。3掌握数列极限的概念;并能运用-N语言处理极限问题。4理解函数极限的概念;并能应用-, -M语言处理极限问题;了解函数的左、右极限;掌握函数极限的性质。5了解无穷小量、无穷大量的概念,掌握无穷小的比较方法,会用等价无穷小求极限。6了解
2、夹挤定理和单调有界定理,掌握用两个重要极限公式求极限的方法。7理解一元函数连续性,掌握函数间断点及其分类。8了解初等函数的连续性,能正确叙述和简单应用闭区间上连续函数的性质。二、导数与微分(一)考试内容 导数的概念;导数的运算法则;初等函数的导数;高阶导数;隐函数与参数方程确定的函数的导数;微分及应用。(二)考试要求1理解导数的概念和导数的几何意义,了解函数的可导性与连续性之间的关系。2求曲线上一点处的切线方程与法线方程。3掌握求导数的基本公式、导数的四则运算法则及复合函数的求导方法。4掌握求隐函数及由参数方程所确定函数的一、二阶导数的方法,会使用对数求导法。5了解高阶导数的概念,会求初等函数
3、的二阶导数。6掌握微分运算法则,会求函数的微分。三、微分中值定理及应用(一)考试内容:微分中值定理;洛必塔法则;函数的单调性和极值;函数图象的描绘。(二)考试要求:1了解罗尔定理、拉格朗日中值定理,会用罗尔定理证明简单的等式。2掌握应用洛必达法则求常见未定式的极限。3掌握利用导数判定函数的单调性及求函数的单调增、减区间。会利用单调性证明不等式。4掌握求函数极值的方法。会解简单的最大(小)值的应用问题。会判定曲线的凹凸性,会求曲线的拐点,会画出一些常见的函数图像。四、不定积分(一)考试内容:不定积分的概念与性质;第一类换元积分法与第二类换元积分法;分部积分法;有理函数的积分和可化为有理函数的积分
4、;积分表的使用;(二)考试要求:1理解原函数与不定积分的概念。2了解不定积分的性质,掌握不定积分的基本公式。3掌握第一类和第二类换元积分法,掌握分部积分法。4会求简单有理函数的不定积分。五、定积分及应用(一)考试内容:定积分的概念与性质;牛顿莱布尼茨公式;定积分的计算方法;定积分的应用;(二)考试要求:1理解定积分的概念与几何意义,了解定积分的性质。2理解积分上限的函数,会求它的导数,了解牛顿莱布尼兹定理。3、熟练掌握用定积分的换元法和分部积分法计算定积分。4掌握用定积分求平面图形的面积和旋转体的体积。5了解反常积分收敛与发散的概念,会求无穷区间上的广义积分。六、向量代数与空间解析几何(一)考
5、试内容:空间直角坐标系与向量的概念;向量的点积与叉积;平面与直线;曲面与空间曲线。(二)考试要求:1理解空间直角坐标系的概念;熟练掌握两点间距离公式;会确定空间点的坐标。2理解向量的概念,掌握向量的线性运算、数量积及向量积等运算方法,掌握判断向量平行或垂直的条件;会求向量的模、方向余弦及两向量间的夹角。3理解平面方程的概念;熟练掌握平面的点法式方程,一般方程;会判断两平面间的位置关系,并会建立平面方程。4理解空间直线的概念;熟练掌握直线的标准方程、参数方程及一般方程;会判断两直线的位置关系、并会建立直线方程。 5了解一些常见的曲线方程、曲面方程。七、行列式(一)考试内容行列式的定义和性质;行列
6、式的计算;克莱姆法则。(二)考试要求1了解行列式的定义;掌握行列式的性质。2掌握行列式的计算方法。3掌握克莱姆法则及其应用。八、线性方程组(一)考试内容消元法;向量的定义与线性关系;向量组的秩;线性方程组解的结构。(二)考试要求1了解n维向量及n维向量的线性相关性,掌握向量组的极大无关组与向量组的秩。2掌握高斯消元法,了解线性方程组解的结构。九、概率与统计(一)考试内容随机事件的概率;等可能性事件的概率;互斥事件有一个发生的概率;相互独立事件同时发生的概率;独立重复试验;离散型随机变量的分布列;离散型随机变量的期望值和方差;抽样方法;总体分布的估计;正态分布;线性回归。(二)考试要求1了解随机
7、事件的发生存在着规律性和随机事件概率的意义。2了解等可能性事件的概念的意义,会用排列组合的基本公式计算一些等可能性事件的概率。3了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。4会计算事件在n次独立重复试验中恰好发生k次的概率。5了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。6了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。7会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。8会用样本频率分布去估计总体分布。9了解正态分布的意义及主要性质。10了解线性回归的方法
8、和简单应用。第二部分 学科课标与教材一、集合与简易逻辑 (一)考试内容集合;子集;交集、并集;补集;逻辑联结词;四种命题;充分条件和必要条件。(二)考试要求1理解集合、子集、交集、并集、补集的概念.了解空集和全集的意义.了解属于、包含、相等关系的意义.掌握有关的术语和符号,并会用它们正确表示一些简单的集合。2理解逻辑联结词或、且、非的含义.理解四种命题及其相互关系.掌握充分条件、必要条件及充要条件的意义。二、函数(一)考试内容对应与映射;函数概念;函数表示法和函数图像;函数的单调性、奇偶性;反函数;互为反函数的函数图像间的关系;分数指数幂;有理数指数幂的运算性质;幂函数;指数函数;对数;对数的
9、运算性质;对数函数;函数的应用。(二)考试要求1了解对应与映射的概念,理解函数的概念,掌握函数的表示法。2了解函数的单调性、奇偶性的概念,掌握判断一些简单函数的单调性、奇偶性的方法。3了解反函数的概念及互为反函数的函数图像间的关系,会求一些简单函数的反函数。4理解分数指数幂的概念,掌握有理数指数幂的运算性质。掌握幂函数、指数函数的概念、图象和性质。5理解对数的概念,掌握对数的运算性质;掌握对数函数的概念、图像和性质。6能够运用函数的性质、指数函数和对数函数的性质解决某些简单的实际问题。 三、数列(一)考试内容数列;等差数列及其通项公式;等差数列前n项和公式;等比数列及其通项公式;等比数列前n项
10、和公式。(二)考试要求1理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项。2理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题。3理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,并能解决简单的实际问题。四、三角函数(一)考试内容角的概念的推广;弧度制;任意角的三角函数;单位圆中的三角函数线;同角三角函数的基本关系式:sin2+cos2=1,sin/cos=tan,tancot=1;正弦、余弦的诱导公式;两角和与差的正弦、余弦、正切;二倍角的正弦、余弦、正切;正弦函数、余弦函数的图像和性质;周期函数
11、。函数y=Asin(x+)的图像;正切函数的图像和性质;已知三角函数值求角;正弦定理、余弦定理;斜三角形解法。(二)考试要求1了解任意角的概念、弧度的意义。能正确地进行弧度与角度的换算。2理解任意角的正弦、余弦、正切的定义。了解余切、正割、余割的定义。掌握同角三角函数的基本关系式。掌握正弦、余弦的诱导公式。了解周期函数与最小正周期的意义。3掌握两角和与两角差的正弦、余弦、正切公式。掌握二倍角的正弦、余弦、正切公式。4能正确运用三角公式进行简单三角函数式的化简、求值和恒等式证明。5理解正弦函数、余弦函数、正切函数的图像和性质,会用五点法画正弦函数、余弦函数和函数y=Asin(x+)的简图。6会由
12、已知三角函数值求角,并会用符号arcsinx arccosx arctanx表示。7掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。 五、不等式(一)考试内容不等式;不等式的基本性质;不等式的证明;含绝对值的不等式;不等式的解法。(二)考试要求1理解不等式的性质及其证明。2掌握两个正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用。3掌握分析法、综合法、比较法证明简单的不等式。4掌握简单不等式的解法。5理解不等式a-ba+ba+b。 六、不定方程(一)考试内容不定方程;二元一次不定方程;三元一次不定方程。(二)考试要求1了解不定方程的概念。2掌握二元一次不定方程有整数解的条件及其
13、求特解的方法。3了解三元一次不定方程的解法。七、复数(一)考试内容复数的概念;复数的向量表示。复数的加法与减法;复数的乘法和除法。复数的三角形式。(二)考试要求1了解引入复数的必要性;理解复数的有关概念;掌握复数的代数表示、几何表示。了解复数的向量表示。2掌握复数的代数形式的加法、减法、乘法、除法的运算。3掌握复数的三角形式。八、数集(一)考试内容数的概念的发展。整数集;有理数集;无理数集的引入;复数集。(二)考试要求1掌握自然数集、整数集、有理数集、实数集和复数集之间的关系。2理解自然数集、整数集和有理数集的性质。了解实数集、复数集的性质。九、平面向量(一)考试内容向量;向量的加法与减法;实
14、数与向量的积;平面向量的坐标表示;平面向量的数量积及运算律;平面向量数量积的坐标表示; 线段的定比分点;平移。(二)考试要求1理解向量的概念,掌握向量的几何表示,了解共线向量的概念。2掌握向量的加法和减法。3掌握实数与向量的积,理解两个向量共线的充要条件。4了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算。5掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件。6掌握平面两点间的距离公式以及线段的定比分点和中点坐标公式,并且能熟练运用、掌握平移公式。十、直线和圆的方程(一)考试内容直线的倾斜角与斜率;直线的方程(
15、点斜式、两点式、直线方程的一般式);两条直线的位置关系(平行与垂直的条件、两条直线的交角、点到直线的距离);简单的线性规划问题;曲线与方程的概念;由已知条件求曲线方程;圆的标准方程和一般方程;圆的参数方程。(二)考试要求1理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。2掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系。3了解二元一次不等式表示平面区域及线性规划的意义,并会简单的应用。4了解解析几何的基本思想,了解坐标法。5掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程。 十一
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1