ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:40.06KB ,
资源ID:318834      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/318834.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(采用改进细菌觅食算法的风光储混合微电网电源优化配置百度概要.docx)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

采用改进细菌觅食算法的风光储混合微电网电源优化配置百度概要.docx

1、采用改进细菌觅食算法的风光储混合微电网电源优化配置XX概要第31卷第25期中国电机工程学报V ol.31 No.25 Sep.5, 20112011年9月5日Proceedings of the CSEE 2011 Chin.Soc.for Elec.Eng. 17 文章编号:0258-8013 (2011 25-0017-09 中图分类号:TM 61;TM 732 文献标志码:A 学科分类号:47040采用改进细菌觅食算法的风/光/储混合微电网电源优化配置马溪原,吴耀文,方华亮,孙元章(武汉大学电气工程学院,湖北省武汉市 430072Optimal Sizing of Hybrid Sola

2、r-wind Distributed Generation in an Islanded MicrogridUsing Improved Bacterial Foraging AlgorithmMA Xiyuan, WU Yaowen, FANG Hualiang, SUN Yuanzhang(School of Electrical Engineering, Wuhan University, Wuhan 430072, Hubei Province, ChinaABSTRACT: Wind and solar energy have the characteristics of rando

3、mness and waviness. As the coordination among distributed generation (DG, energy storages and loads is very complicated, proper combination of DG in an islanded microgrid is a primary problem for its reliability and economy. This paper used the bacterial foraging algorithm (BFA to solve the optimal

4、sizing problem of hybrid solar-wind DG in microgrid. The economic model of optimal sizing was built with the objective that takes annual costs of equipment, operation and maintenance, fuels, environment protection into account. The meteorological conditions of wind speed, solar radiation and tempera

5、ture were input. According to alternatives of DG and power supply reliability, the types and optimal sizing of DG were designed. The results show the BFA has a strong global optimal capability and fast speed. This method can comprehensively evaluate the economy efficiency of DG and reduce redundant

6、investment to satisfy customers diversification of reliability requirements according to meteorological conditions.KEY WORDS: microgrid; bacterial foraging algorithm; optimal sizing; distributed generation摘要:风能和太阳能具有随机性和波动性的特点,由分布式电源、储能装置、负荷组成的微电网协调运行与控制十分复杂,对孤岛运行的微电网合理地配置电源以提高供电可靠性、经济性是微电网规划建设的一个首要

7、问题。将改进的细菌觅食算法(bacterial foraging algorithm,BFA应用到解决基金项目:中央高校基本科研业务费专项资金资助(201120702020010。Project Supported by the Fundamental Research Fund for the Central Universities (201120702020010.风/光/储混合的全年孤岛运行的微电网电源优化配置问题中,建立了计及设备投资成本、运行和维护成本、燃料成本、环保折算成本的微电网电源优化配置模型,以年风速、气温、光照强度作为输入,根据不同的用户供电可靠性和备选电源要求,得到微电

8、网电源的类型及其容量的最优方案,结果表明改进的细菌觅食算法具有全局最优搜索能力强、寻优速度快的特点。该方法可以全面评估各种分布式电源的经济性,根据微电网建设地点的气象条件、投资成本等降低微电网电源的冗余投资,满足用户定制的多样化可靠性要求。关键词:微电网;细菌觅食算法;最优容量;分布式电源0 引言微电网在提高终端用户多样化的供电可靠性、电能质量等方面具有重要作用1。随着微电网控制技术的持续发展和可再生能源发电成本的不断降低,微电网可以表现为一个孤岛独立运行的有源自治电力系统实现节能减排2。微电网也是解决现代新农村电气化的经济供电方式,避免了远距离输电带来的电能损耗和建设费用3,也可以应用于边远

9、军事哨所、岛屿供电、高海拔独立电网等特殊场合,是对传统供电形式的有利补充。在微电网规划中,合理的电源选型和定容是一个重要和复杂的问题4:1经济性。分布式电源的效率、设备成本、安装成本、运行和维护成本、燃料成本、全寿命周期等都需要考虑。光伏列阵、风机的设备一次投资很高。在当今国际能源紧张的形势下,燃料成本也很高。18 中国电机工程学报第31卷2环保性。风能和太阳能虽然不存在燃料和环保成本,但输出功率受自然因素(如风速、光强等的影响而呈现随机性和波动性。微型燃气轮机、柴油发电机、燃料电池的发电效率低,能耗大且破坏环境。3响应特性。微型燃气轮机和燃料电池等均具有响应速度慢和无惯性的特点,需要在母线加

10、装储能以跟踪负荷的变化;同时储能装置能够跟踪风能和太阳能的出力变化进行充放电,提高供电连续性和可靠性。4系统性。不同的运行方式(如并网或孤岛、不同的控制手段、不同的可靠性要求也会改变配置的结果。目前,分布式电源的选址、选型、定容是微电网规划阶段中需要考虑的首要问题,国内外一些学者对其进行研究,取得了一些理论和实践方面的成果。文献5考虑了网损、电压改善程度和环境改善程度以优化电源选址和容量;文献6提出一种含多种复合能源的分布式发电系统成本最低的机组组合模型;文献7建立了将分布式发电作为备用电源的电源容量优化配置模型,考虑了经济性、可靠性和环保性。但文献5-7均未考虑风能、太阳能的随机性和波动性给

11、分布式电源优化配置带来的影响以及储能的容量配置问题,只将不可再生分布式发电作为配电网的一个备用电源。本文研究了含风机、光伏列阵、储能装置及其他类型分布式电源的全年孤岛运行的微电网电源容量优化配置方法,以总投资最少为目标函数,以供电可靠性等为约束条件,将微电网电源的优化配置问题转化为一个多约束条件的非线性整数规划问题,采用改进的细菌觅食算法求解该优化问题。1 风/光/储混合的微电网电源模型1.1 风/光/储混合的微电网风/光/储混合的微电网可以由风机、光伏列阵、储能装置、微型燃气轮机、柴油发电机、燃料电池等分布式电源及其逆变器和控制器组成,由公共连接点与配电网相连。本文假定微电网电源及其储能装置

12、采用先进的电力电子装置作为接口接入微电网,能够快速跟踪负荷、风能和太阳能出力等的变化,实现“即插即用”,同时微电网有能力根据电源的出力及时调整负荷的大小,可平稳运行在孤岛模式下8-9。其结构示意图如图1所示。 柴油发电机微型燃气轮机燃料电池蓄电池组图1微电网示意图Fig. 1 Microgrid and components1.2 风机模型风电机组的输出功率与风速之间的近似关系可用如下分段函数10表示:cici rWTr r coco0,0(,(,0,v vv v v vP vP v v vv v=(1式中:v ci为切入风速;v co为切出风速;v r为额定风速;P r为风力发电机组额定输出

13、功率。当风速介于v ci和v r之间时风力发电机输出功率可以表示为风速函数(v,一般可以近似为线性关系,即(v=P r(vv ci/(v rv ci (2 本文采用美国Bergey Windpower公司BergeyExcel型风机11,根据厂家数据其P r为10kW,v ci为2.5m/s,v r为12m/s,v co为18m/s。1.3 光伏列阵模型光伏列阵实际输出功率可由标准额定条件下的输出功率、光照强度、环境温度得到12:cPV STC c STCSTC1(GP P k T TG=+ (3式中:P PV为工作点的输出功率;光伏组件厂商通常会给出标准额定条件(standard test

14、condition,STC下的运行参数,STC特指太阳辐照度G STC为1kW/m2,电池表面温度T STC为25,相对大气光学质量为AM1.5的条件13;G c为工作点的辐照度;k为功率温度系数;P STC为标准额定条件下光伏列阵的额定输出功率,若n PV为光伏列阵的光伏电池总数,p stc为光伏电池的额定输出功率,则P STC=第25期 马溪原等:采用改进细菌觅食算法的风/光/储混合微电网电源优化配置 19n PV p stc ;T c 为工作点的电池表面温度,它是环境温度T a 和风速的函数12:T c = T a + G c (4 其中系数 为风速v 的指数函数:312(e c v f

15、 v c c =+ (5式中c 1、c 2、c 3为常系数。 本文采用SOLAREX 公司MSX-83型光伏电池,其额定输出功率为83 W 。 1.4 储能装置模型本文使用蓄电池组作为储能元件,储能控制器可以快速控制储能装置充放电来跟踪负荷的变化。蓄电池实际可用容量E bat 是电池温度的函数:E bat = E STC 1 + B (T bat T batSTC (6式中:T bat 为工作点蓄电池温度,即为环境温度T a ;E STC 为标准状况下蓄电池的额定容量,通常由厂家提供参数;标准状况下温度T batSTC 为25 ;B 为容量温度系数,通常情况下为0.6%14。在电池的充放电过程中需考虑2个约束条件:1确保蓄电池的寿命和运行安全。S SOC 为电池充电状态(state of charge ,SOC,是储能控制器防止电池过度充电和过度放电的一个重要决策变量。当S SOC 达到电池最大容量(即S max = 100%时,储能控制器控制电池停止充电,当S SOC 达到电池最小充电状态时,储能控制器控制电池停止放电,S min 通常是电池容量的20%,即E SOC,t +1 = E

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1