ImageVerifierCode 换一换
格式:DOCX , 页数:20 ,大小:375.42KB ,
资源ID:3186769      下载积分:12 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3186769.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(盾构机参数设定.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

盾构机参数设定.docx

1、盾构机参数设定土压平衡式盾构机控制原理与参数设置随着地下空间的开发,盾构技术已广泛地应用于地铁、隧道、市政管道等工程领域。在我国的各项施工中,盾构机的种类越来越多,其中土压平衡式盾构机在上海、南京、广州等地铁施工中有着较为出色的表现,笔者以日本小松公司6340盾构机为例,结合施工中的一点经验与理解,对其控制原理和参数设置等做简要总结。 控制原理 土压平衡式盾构机的土压控制是PID自动调节控制,切削刀盘切下的弃土进入土仓,形成土压,土压超过预先设定值时,土仓门打开,部分弃土通过螺旋机排出土仓,从而保持土仓内土压平衡,土仓内的土压反作用于挖掘面,防止地层的坍塌。 土压的平衡控制是通过装在盾构机土仓

2、隔壁上的土压计对掘进中的土压进行实时监视,土压计监测到的数值传送到PLC,PLC计算出测量值与设定值之间的差值 E,通过PID控制,自动调整螺旋机转速,使E值趋向于零,当E值大于零时,PLC发出指令,增加螺旋机转速,提高出土量直至土仓内土压重新达到新的平衡状态,反之当E值小于零时,PLC 会降低螺旋机转速,以减少偏差。以保持土仓内土压平衡,使盾构机正常掘进。 主要参数 抽样周期:PID 演算处理的时间间隔,周期越短,动作越连续,但增加了单位时间的处理次数,因此PID以外的控制变慢,不需要细微变动时,可延长周期。 过滤系数:用来除去输入模拟值上的高频成分,数值越大,则过滤效果越强,系统反应也就越

3、迟钝。 比例常数P:为了提高系统灵敏度,使土压保持在一定范围,把计测值与设定值的差值E 乘以一个系数,所得结果再与目标值相比较,这个系数就是比例常数P,P 值越大,调控效果越好。 积分时间I:系统引入比例常数后,PLC调控螺旋机的输出操作量mv=P*E,也就是偏差被放大了P倍,这样当系统产生偏差时,可能会使螺旋机转速突然增大或减小了许多,形成超调现象,于是又反过来调整,这就引起螺旋机转速忽大忽小,形成振荡。为了消除振荡,引入积分环节,使操作量mv 在积分时间内逐渐完成,即螺旋机转速平稳变化,直到消除偏差。积分时间越小,调控效果越好。 微分时间:根据偏差变化率de/dt 的大小,提前给出一个相应

4、的调节动作,从而缩短了调节时间,可以克服因积分时间太长而使恢复滞后的缺点。 参数设定 参数设置分为两步,第一步是在设备组装完毕,无负荷的状态下进行的一次调试,第二步是在掘进开始,土层稳定后,根据土层状况和操作习惯进行的微调。 1、无负荷调试 (1)比例系数P,首先不执行 I和D,I调至数值上限,D设定为 0,这样系统只执行比例动作P,变动土压目标值,制造约0.01 0.03Mpa 的系统偏差,接下来逐渐增大 P 值,使螺旋机转速逐渐增大,当 P 值上升到一定值时,螺旋机的旋转速度会出现大幅度地反复升降,即系统形成振荡,我们把出现振荡时P 值的 85% 90% 设定为系统的比例系数。 (2)积分

5、时间I,比例系数确定后,调节积分时间I,变动土压目标值,制造一个系统偏差,观察螺旋机回转速度以怎样的速度变化,继续加一定的偏差时,系统向偏差减小的方向增加或减小操作量,操作量的变化程度随积分时间I的变化而变化,此时可以根据操作人员的操作习惯来确定积分时间,一般来说,I在数值上为 P值的70% 左右。 (3)微分时间D,在盾构机PID 控制中,管理对象是土仓内的土压,如果掘进速度一定,则土压与切削土量减排土量之差的时间累积成正比,另一方面,系统的控制对象是螺旋机转速,而螺旋机转速同单位时间的排土量成正比,这样从系统输入来看,系统的输出是以时间微分的形式使用,所以盾构机PID控制中可以不执行微分动

6、作,把D值设置为0。 2、土层掘进时的调整 (1)过滤系数,进入土层后,如果腔内土压、螺旋机的输入信号在短周期内大幅振荡的话,可以慢慢增大过滤系数,在短周期内如果再次出现小的振荡,不需要再增大过滤系数,即使在长周期内出现较大幅度的振荡,也只需略微增大过滤系数。 (2)比例系数P,掘进中,把I值和D值固定,按每次0.5%的幅度调节P值,P值一变,控制整体的增益就发生变化,相对于同一土压偏差的操作量的大小也发生变化,观察螺旋机转速变化量,直到满意即可固定P值。 (3)积分时间I,与积分时间相对应的是操作量增减时的梯度,掘进中对现有I值不满意可以调整,固定P值和D值,如果希望操作量增加更快时,减小I

7、值,反之增大I值,每次增减的幅度以13秒为宜,如果I值过小,可能会引起振荡,调整时注意掌握。 (4)微分时间,原则上,土压平衡式盾构机不需要设置微分时间,但有些大口径盾构机对偏差反应会比较迟钝,这种情况下,使用微分环节,可以改善盾构机对偏差的初始反应,但D 值限于2ms 之间。 常见问题 在盾构机各参数设定完毕,正常掘进以后,常见故障往往出现在外围设备之中,现简要说明设备各主要环节及常见故障处理。 1、刀盘电机,刀盘电机即驱动刀盘所用电机,单机功率一般在55KW左右,最常见的控制方式为PLC控制变频器,变频器拖动电动机,这一环节最易出现故障的就是变频器。变频器在布线时应考虑以下两点: 变频器如

8、果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这种情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。 电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样可以减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。 变频器常见故障有如下三点: 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这

9、时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路损坏,需要更换变频器。 过载故障:过载故障包括变频过载和电机过载,可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。 欠压:说明变频器电源输入部分有问题,需要查检主电源,排除故障后方可运行。 2、拼装机,拼装机是拼装管片之用,是由油泵通过电磁阀控制相应

10、油缸来完成收缩、扩张、压紧等动作,这个环节最易出现故障的是电磁阀,在熟悉图纸的基础上,拼装机摇控器上哪个按键对应的动作没有反应,就查相应电磁阀及其相关电缆是否正常。另外摇控器受信头,由于使用频率很高,偶尔也会出现故障。 3、双梁电动葫芦,双梁电动葫芦的作用是将电机车运送进来的管片吊运至管片拼装机,这个环节最易出问题的是电缆,要经常检查电缆有无受拉损坏,滑环是否正常等,另外接触器因为频繁动作也是易损部件,出现问题时可作为重点排查对象。 综上所述,掌握了盾构机的基本控制原理和参数的设置要点,就可以根据土层情况及操作人员的操作习惯,逐渐把盾构机调试到最佳状态。关于盾构机常见故障,还需维修人员结合图纸

11、,在工作中积累经验。盾构机自动加气系统的使用与参数调整海瑞克盾构机空气自动加气系统用于保持土仓内空气压力接近恒定值,是一种压力自动控制系统。要使控制系统达到预期的控制效果,必须对影响系统动态性能的 PI(比例积分)调节器参数进行正确设定。同时盾构机工作在恶劣的环境中,加气系统的弹簧疲劳、膜片老化等将引起调节器参数的变化,导致系统控制失常,因此在使用中要经常调整调节器的参数。 1.自动加气系统工作原理 自动加气系统控制原理如图1所示。 压力变送器1将土仓内实际的空气压力转换成标准的气压信号X(0.02 0.1MPa)送往调节器4。 调节器把变送器送来的测量值X与设定值W (0.020.1MPa)

12、进行比较得出偏差,根据偏差大小及变化趋势,按P1调节器控制规律进行运算后,输出相应的控制信号Y给定位器3。 定位器将从调节器送来的调节信号Y (0.020.1MPa)与从调节阀送来的阀门位置信号相比较,判断它们是否与预期的关系相匹配。如果匹配,则定位器将使调节阀开度保持不变,否则将通过定位器内部放大器的作用,使通往调节阀2的气压发生大的变化,以克服阀杆的摩擦并消除调节阀不平衡力的影响,使调节阀动作直至两个信号相匹配,从而保证阀门位置按调节器发出的信号正确定位。 2.使用方法 自动加气系统控制模块(见图2)包括显示面板和手动操作站等。手动操作站、调节器等使用的是德国(Samson Type422

13、, Type 423)产品。手动操作站和调节器之间的管路连接见图3所示,显示面板上的X,W值和调节器上的X、W值是不同的,调节器上的X,W值是标准气压信号( 0.020. 1MPa ),而面板上的X, W值分别是调节器上的X,W值经过波纹管和杠杆机械转换后显示出的土仓实际压力值和期望的土仓压力设定值。 使用步骤可归纳为: (1)打开相关气路,检查图1中减压阀5和气动三联件6出口压力是否分别为0.14 MPa0.01 MPa和0.4 MPa0.01 MPa ,确保管路无泄漏、堵塞现象。 (2) 检查Wint/Weat选择开关是否处在Wint位,如果是,表明调节器的设定值W由图2中的旋钮5调定,处

14、在W,位则表明调节器的设定值W由操作站外部给定,本系统中设定值W由旋钮5调定。 (3)将手动/自动开关打到手动操作位: (4)调整图2中旋钮7,使控制系统开始工作,调整YH值直至实际值指示针(红色)慢慢靠近设定值(绿针)。 (5)在调整YH过程中,自动操作输出信号YA也在慢慢上升,当YA=YH时,将手动/自动开关打到自动操作位,这样可减少系统冲击。 (6)观察系统动态响应特性,如果实际值是在设定值的范围内波动,则表明系统已处在正常的工作状态,否则僻要重新调整PI调节器的控制参数。 3.参数调整方法 自动加气系统控制目标是保持土仓压力恒定,同时要求系统对扰动的抑制能力较高,因此没有采用微分控制,

15、仅采用PI(比例积分)控制方式。调节器参数调整,是指在控制规律已经确定为PI形式时,通过调整PI调节器的参数,使得控制回路的动态特性满足期望的指标要求,达到理想的控制目标。 可以使用试凑法调定PI参数。根据经验公式和自动加气系统的特性对参数实行下述先比例后积分的调定步骤。 首先调定比例部分,即先将积分时间Tn设为最大(20 min),然后由小变大逐步改变比例系数Kp,同时观察调节器输出信号和被调整参数的变化情况。如果调节过程是衰减振荡的,则应使Kp续减小;如果调节过程是增幅振荡的,则应使Kp增大,这样调整直至调节过程成为等幅振荡为止。由于此时系统仍有静差,且静差仍在一个较大的范围内,所以单用比例调节器还不能达到控制目的,应进入下一步积分调节。 调定积分系统。首先设皿Tn为一个较小的值,并将第一步调整得到的Kp略微缩小,如缩小为原值的0.8倍。然后逐步增大Tn,观察系统响应曲线,使系统在保持良好动态性能的情况下,静差得

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1