ImageVerifierCode 换一换
格式:PDF , 页数:6 ,大小:320.50KB ,
资源ID:3176075      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3176075.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(量子点的制备方法综述及展望.pdf)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

量子点的制备方法综述及展望.pdf

1、量子点的制备方法综述及展望1前言在最近的几十年里,量子点(QDs)即半导体纳米晶体(NCs)由于具有独特的电子和发光性质以及量子点在生物标记,发光二极管,激光和太阳能电池等领域的应用成为大家关注的焦点。英语论文。量子点尺寸大约为1-10 纳米,它的尺寸和形状可以精确的通过反应时间、温度、配体来控制。当量子点尺寸小于它的波尔半径的时候,量子点的连续能级开始分离,它的值最终由它的尺寸决定。随着量子点的尺寸变小,它的能隙增加,导致发射峰位置蓝移。由于这种量子限域效应,我们称它为“量子点”。1998 年,Alivisatos和 Nie 两个研究小组首次解决了量子点作为生物探针的生物相容性问题,他们利用

2、MPA 将量子点从氯仿转移到水溶液,标志着量子点的生物应用的时代的到来。目前,量子点最引人瞩目的的应用领域之一就是在生物体系中做荧光探针。与传统的有机染料相比,量子点具有无法比拟的发光性能,比如尺寸可调的荧光发射,窄且对称的发射光谱宽且连续的吸收光谱,极好的光稳定性。通过调节不同的尺寸,可以获得不同发射波长的量子点。窄且对称的荧光发射使量子点成为一种理想的多色标记的材料。由于宽且连续的吸收光谱,用一个激光源就可以同时激发一系列波长不同荧光量子点量子点良好的光稳定性使它能够很好的应用于组织成像等。硕士网为你提供计算机硕士论文。量子点集中以上诸多优点是十分难得的,因此这就要求我们制备出宽吸收带,窄

3、且对称的发射峰,高的量子产率稳定和良好生物兼容性的稳定量子点。现在用作荧光探针的量子点主要有单核量子点(CdSe,CdTe,CdS)和核壳式量子点(CdSe/ZnS39,CdSe/ZnSe40)。量子点的制备方法主要分为在水相体系中合成和在有机相体系中合成。本文主要以制备量子点的结构及合成方法为主线分为两部分:第一部分综述了近十几年量子点在有机相中的制备方法的演变历程,重点包括前体的选择,操作条件和合成量子点结构。第二部分介绍了近十几年量子点在水相中制备方法的改进历程,重点包括保护剂的选择及水热法及微波辅助法合成方法。2在有机体系中制备在有机相中制备量子点主要采用有机金属法,有机金属法是在高沸

4、点的有机溶剂中利用前躯体热解制备量子点的方法,即将有机金属前躯体溶液注射进250300的配体溶液中,前躯体在高温条件下迅速热解并成核,晶核缓慢生长成为纳米晶粒。通过配体的吸附作用阻滞晶核生长,并稳定存在于溶剂中。配体所采用的前躯体主要为烷基金属(如二甲基隔)和烷基非金属(如二-三甲基硅烷基硒)化合物,主配体为三辛基氧化膦(TOPO),溶剂兼次配体为三辛基膦(TOP)。这种方法制备量子点,具有可制备量子点的种类多、改进纳米颗粒性能的方法多及所量子点的量子产率高等优点,其粒径分布可用多种手段控制,因而成为目前制备量子点的主要方法。2.1 单核量子点的制备1993 年,Murray 等采用有机金属试

5、剂作为反应前驱物,在高温有机溶剂中通过调节反应温度,合成了量子产率约为10%、单分散(5%)的CdSe 量子点。他们采用TOPO 作为有机配位溶剂,用Cd(CH3)2 和TOP-Se 作为反应前驱物,依次将其注入到剧烈搅拌的350TOPO 溶液中,在短时间内生成大量的CdSe 纳米颗粒晶核,然后迅速降温至240以阻止CdSe 纳米颗粒继续成核,随后升温到260280并维持一段时间,根据其吸收光谱监测晶体的生长,当晶体生长到所需要的尺寸时,将反应液冷却至60。加入丁醇防止TOPO 凝固,随后加入过量的甲醇,由于CdSe 纳米颗粒不溶于甲醇,通过离心便可得到CdSe 纳米颗粒。通过改变温度,可以将

6、粒径控制在2.413nm 之间,且表面的TOPO 可以用吡啶、呋喃等代替。此后,Peng 等又通过进一步优化工艺条件,将两组体积不同,配比一定的Cd(CH3)2、Se、TOP 的混合溶液先后快速注入高温 TOPO 中的方法制得了棒状的 CdSe量子点,从而扩展了该合成方法对量子点纳米晶粒形状的控制。利用这种方法合成的量子点受到杂质和晶格缺陷的影响,因此量子产率较低。由于Te 更容易被氧化,所以制备高质量的CdTe 要比制备CdSe,CdS 难得多。2001 年,Dmitri.V 等用DDA(十二胺)代替TOPO作反应溶剂合成高质量的CdTe 量子点,量子产率可达65%,且窄的发射光谱覆盖红色和

7、绿色光区。为了更好的理解CdTe 量子点的成长机理,2002 年,Sanser17报导了同样用DDA(十二胺)和TOP 的混合溶液作前体,分别在145,165,和180下制备的CdTe 的尺寸依次为2.4nm,2.7nm,2.9nm。实验中发现,反应温度越高,量子点成长速度越快,量子产率越高,量子点发光寿命越长。因为有机隔,有机锌等试剂本身剧毒,在常温下不稳定,易燃易爆,所以整个制备过程必须严格控制在无水无氧的条件下进行,而且当把有机隔注入高温TOPO 时,会产生金属沉淀,还有就是有机隔的价格昂贵,这些缺点限制了有机金属法的应用和进展,需要找到有机隔的替代品。2001 年,Peng18等对传统

8、方法进行改进,选用CdO 代替Cd(CH3)2 作为Cd 的前体,选用 HPA(己基膦酸)和 TDPA(十四烷基膦酸)作为强配体,在纯度为90%的 TOPO 中一步合成出了高质量的 CdS、CdSe、CdTe 量子点。由于不采用有机镉作为原料,反应不需要在严格的无水、无氧的条件下进行,而且反应温度较低(250300),反应温和,成核速度慢(几十秒),增强了实验的再现性,大大地简化了制备工艺,减轻了对环境的污染。随后,Qu19等继续用CdO 代替有机隔加入到TOPO-HAD(十六胺)中混合体系中制备CdSe,实验表明,量子产率和荧光强度等和反应初加入Cd 前体和Se 前体的摩尔质量比密切相关,当

9、Se 前体过量Cd 前体510 倍时,所得量子点的量子产率在室温下可达85%,对应半峰宽仅23nm,并可稳定保存数月。接着,Qu 等20在上述实验研究基础上,研究了不同前体/溶剂/配体组合对制备量子点的影响,合成出粒径1.525nm 的CdSe 量子点。研究表明选用Cd(Ac)2 与脂肪酸这一前体/溶剂组合,因其反应速度快,适合合成粒径大的CdSe 量子点。后来,量子点的合成工艺又有了新的改进,一些价格低廉,绿色环保的试剂逐渐被采用,代替常用的TOPO,TOP 等有机试剂。例如油酸作配体,ODE(十八碳烯)代替TOPO 作高温反应溶剂。2002 年,Yu 等首次用油酸和ODE(十八碳烯)分别作

10、配体和非配位溶剂,合成高质量的CdS 量子点。同样这种方法也应用到合成其它量子点上,包括ZnSe。2004 年,Li 等利用 Zn 的脂肪酸盐硬脂酸锌作为 Zn 前体在ODE 中制得了高度单分散的 ZnS 和 ZnSe 量子点,量子产率高到50,半峰宽只有14nm。但是试验中,仍然用到TOPO溶解Se 粉,没有真正实现替代有机溶剂。近年来,又出现了另外一种长烷基链烷烃-液体石蜡,橄榄油作溶剂的报道,与TOPO及ODE 等有机溶剂相比,液体石蜡和橄榄油价格更低廉。2006 年,Sapra 等利用橄榄油同时作为溶剂和配体,制得了高度单分散的 CdSe 纳米晶粒,合成量子点尺寸在2.36.0nm,所

11、对应的光谱范围485640 nm,但是量子产率偏低,只有10%15%。2007 年,Dai等同样用橄榄油同时作为溶剂和配体合成高度分散的ZnSe 纳米晶体和纳米花,整个操作过程简单,不需除氧操作,所用试剂绿色环保,重现性好,他们不仅报导了一种新颖的ZnSe纳米花合成方法并且提出了纳米花合成的机理。2005 年,唐等 采用液体石蜡作为 Se 的溶剂,油酸作为配体,溶解 CdO 形成 Cd 前体溶液。在剧烈搅拌的条件下,Se 可溶于高温液体石蜡(220)中形成 Se 前体溶液,将 Cd 前体溶液快速注入到 Se 前体溶液中反应,制得了 CdSe 量子点,量子产率可以达到60%。利用这种合成方法,邢

12、等26合成了高质量的 CdTe 量子点,利用这种方法制得的 CdTe 量子点均为立方闪锌矿结构,粒径范围为37 nm,最大发射波长在570720 nm 范围内连续可调,荧光量子产率最高达到65%,重要的是发现量子点在1560具有良好的热稳定性,有利于生物领域中的应用。同年他们成功地将这种油溶性 CdSe 量子点通过溶胀的方法包入多孔聚苯乙烯微球中形成性能优异的水溶性荧光微球27。此外,2007 年,Liao等采用液体石蜡作溶剂,油酸作反应媒介在较低温度170时制得高度单分散的CdSe 量子点,但是量子产率较低。2.2 核壳式量子点量子点荧光的产生,是由于吸收激发光以后,产生电荷载体的重组。如果

13、制备的量子点有大量的缺陷,就会发生电荷载体的无辐射重组,严重影响量子产率;如果缺陷仅位于粒子的表面,可以通过化学方法来改善这些缺陷。因此人们想到用长链烷烃作表面活化剂,提高量子产率,但是有机配体很难同时钝化量子点表面的阴离子和阳离子,对无机材料来说,不仅可消除表面阴阳离子,而且产生新的纳米晶体29。实验结果表明,量子点的荧光性质确实可以通过表面修饰,特别是在在半导体量子点核上外延生长另一种晶格匹配、宽带隙的壳材料对于半导体量子点的稳定性和可加工性有很大的改善作用。这样,当光作用到量子点时形成的电子和空穴就会被限域于核材料内部,从而减少了非辐射复合,提高半导体材料的光致发光和电致发光性能,同时抗

14、光氧化能力、化学稳定性和热稳定性都得到显着提高。1995 年,Hines 等38以Zn(CH3)2(二甲基锌)和(TMS)2S(六甲基二硅硫烷)作为 Zn前体和 S 前体,用有机金属法制备出了CdSe/ZnS 核壳结构的量子点。包覆层ZnS 消除了原子表面的悬挂键,减小了量子点发生团聚的可能,使其在室温下的量子产率有了显着的提高,可以达到50%。1996 年,Bawendi 等39又利用 ZnEt2(二乙基锌)和(TMS)2S 作为 Zn 前体和 S 前体,在 CdSe 的表面包覆了 ZnS,有效的限制了载流子,可以将 CdSe 在室温下的量子产率提高到4050%左右。尽管当时大家的研究集中在

15、ZnS 包裹的CdSe 量子点上,由于CdSe 与ZnS 晶格失配度较大(12%),因此造成在量子点表面形成新的缺陷,使调高量子产率程度有限。但是壳材料CdS(3.9%),ZnSe(6.3%)与CdSe 核的晶格失配度相对较小,而且ZnSe 量子点的荧光发射光谱范围在从蓝光到紫外光的短波范围,因此它在电子行业应用的巨大潜力吸引了不少科研人员的注意。在有机金属法合成技术改进后,2002 年,Reissue 等 首先用 CdO 作前体,用 HAD-TOPO 作配体一锅法制备了CdSe 量子点,后以硬脂酸锌作Se 源,在CdSe 量子点表面包覆了一层ZnSe,合成了CdSe/ZnSe。量子产率提高至

16、6085%。2003 年,Mekis 等41以Cd(Ac)2 为Cd 前体,首先在HAD-TOPO-TDPA 混合体系中合成出CdSe 量子点,然后在140下,利用在 CdSe 量子点溶液的上方通入 H2S 气体的方法,合成出 CdSe/CdS 核壳结构的量子点。表面包覆了 CdS和 ZnSe 层后的 CdSe量子点具有窄的半峰宽(fwhm2735 nm)量子产率高达5085%。由于壳核材料之间带宽差异较小,量子点稳定性不强,容易被氧化。2004年,alapin等合成壳核式量子点稳定性有所提高。但是用到有机锌作为包壳原料,因此增加了操作的复杂性。2.3 多元混晶量子点的制备在 2003-2004 年间,Bailey 等以 Se-TOP 和 Te-TOP 作为 Se、Te 前体,将一定比例的 Se、Te 混合前体溶液在300下注入到 CdO 在高温下溶解在 TOPO-HDA 混合体系中形成的 Cd 前体溶液中的方法合成了CdSeTe 三元量子点,通过调节Se 与Te 的比例合成获得 CdSeTe 三元量子点的最大发射波长可以达到850nm,量子产率为 2060%,使得-族量子点的荧光发射

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1