ImageVerifierCode 换一换
格式:PDF , 页数:7 ,大小:303.17KB ,
资源ID:3175622      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/3175622.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(故障预测与健康管理PHM技术的现状与发展.pdf)为本站会员(b****1)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

故障预测与健康管理PHM技术的现状与发展.pdf

1、书书书!第#卷!第$期航!空!学!报%&(#)&($!*$年!+月,-.,/01),2.3-,/.,4.01),2.3-,43)3-,45678!*$收稿日期:*$9*#9:*;修订日期:*$9*;9$基金项目::+*)资助项目!文章编号::*9#+=(*$)*$9*#:*9*;故障预测与健康管理(!#)技术的现状与发展曾声奎:,?ABC5 D8 E5AB7,吴!际(:8 北京航空航天大学 可靠性工程研究所,北京!:*)$%&%(&)*!+,(-+.%/0+(12!,13)1(%/.(&)*+&4%5#&)&3+6+)%7+.5)1413/+(G/)D 4B5HI9JK:,?ABC5 D8 E

2、5AB7,L2 M(:8 3HN77K75&O 05CP7Q/HIH55RHI,S5THI 2HU5RN7Q&O,5R&HCK7AN CHV,N7R&HCK7AN,S5THI!:*24,)摘!要:结合故障预测与健康管理(EY?)的技术发展过程,阐述了 EY?的应用价值。论述了 EY?技术系统级应用问题,提出了故障诊断与预测的人9机9环完整性认知模型,并依此对蓬勃发展的故障诊断与故障预测技术进行了分类与综合分析,给出了 EY?技术的发展图像。针对故障诊断与预测的不确定性特征,对故障诊断与预测技术的性能要求、定量评价与验证方法进行了分析。最后,以 EY?技术的工程应用为线索,提出了EY?技术发展中

3、的几个问题。关键词:故障预测;故障诊断;故障预测与健康管理中图分类号:%:$8;!文献标识码:,89(%,&.%:.BN 6C65R PR5ON 7B5 6&75H7C P5H5O7N&O ER&IH&N7AN CHV Y5C7B?CHCI5W5H7(EY?)H 7B5 IB7&O 7N 59U&UHI BN7&RQ8.B5 NNK5N&O EY?NQN75W95U5 C66AC7&H N&K7H5V,CHV C A&IH7&H W&V5 O&R VCIH&N7AN CHV6R&IH&N7AN N PK7 PCN5V&H 7B5 H75IR7Q&O WCH9WCABH595HUR&HW5H78

4、 SQ KNHI 7BN W&V5,UCR&KN VCIH&N7AN CHV6R&IH&N7AN W57B&VN CR5 ACNNO5V CHV CHCQZ5V,CHV C B&5 6A7KR5&O EY?N VRCH8 2HA5R7CH7Q N C AR7AC OCA7&R&O EY?,7N R5KR5W5HNV5OH7&H,KCH77C7U5 CNN5NNW5H7 CHV U5ROAC7&H W57B&V&I5N CR5 VNAKNN5V8 HCQ,J5QNNK5N&O W65W5H7HI EY?CR5 A75V 7B 7B5 I&C&O 6RCA7AC KN5N8:+;。从*世纪;*年代

5、起,故障诊断、故障预测、-S?、健康管理等系统逐渐在工程中应用。*世纪;*年代中期的,9;/飞机的发动机监控系统(/?4)成为 EY?早期的典型案例$。在=*年的发展过程中,电子产品机上测试(S3.)、发动机 健 康 监 控(/Y?)、结 构 件 健 康 监 控(4Y?)、齿轮箱、液压系统健康监控等具体领域问题的 EY?技术得到了发展,出现了健康与使用监 控 系 统(Y2?4)#、集 成 状 态 评 估 系 统(3-,4);,、装备诊断与预计工具(,X,E.)+等集成应用平台,故障诊断、使用监测、与维修保障系统交联是这些平台具有的典型特征,但故障预测能力和系统集成应用能力很弱或没有。例如,3-

6、,4 正在提升其故障预测能力、开放式系统集成能力,以更好地满足系统级集成应用的需求,:*:(:)通过减少备件、保障设备、维修人力等保障资源需求,降低维修保障费用;()通过减少维修,特别是计划外维修次数,缩短维修时间,提高战备完好率;(=)通过健康感知,减少任务过程中故障引起的风险,提高任务成功率。本文在阐述 EY?概念及其框架的基础上,依据故障诊断与预测的人机环完整性认知模型,对!第 期曾声奎等:故障预测与健康管理(#$%)技术的现状与发展!故障诊断与故障预测技术进行了分类与综合分析;分析了故障诊断与预测技术的性能要求、定量评价与验证方法;理清了#$%技术的发展方向。&!#$%的系统级应用#$

7、%系统一般应具备故障检测、故障隔离、增强的诊断、性能检测、故障预测、健康管理、部件寿命追踪等能力,通过联合分布式信息系统(()*+)与自主保障系统交联。联合攻击战斗机((+,)的#$%系统分为机上与地面两部分。机上部分,包括推进系统、任务系统等若干个区域管理者(-%),完成子系统、部件性能检测,增强的故障诊断,实现关键系统与部件的故障预测等任务。例如,推进系统区域管理者(-%)就集成了吸 入 碎 片 监 控(*)%+)、发 动 机 微 粒 监 控(.)%+)、涡流叶片监控(./0+)、滑油微粒监控(1)%)等功能&。大多数故障诊断与故障预测工具都具有领域相关 的 特 点2,&3。采 用 开 放

8、 式 的 体 系 结 构(1+-),方便各种故障诊断与预测方法的不断完善,实现即插即用,成为了在系统级实现#$%的一项关键技术4。典型的故障诊断与预测流程(图&)包含了数据采集、数据预处理、数据传输、特征提取、数据融合、状态监测、故障诊断、故障预测、保障决策等环节。数据的采集与传输,目前的发展体现在传感器的高精度、小型化、集成化、严酷环境适应性、可靠性(应比被监测对象更可靠)、低能耗,健壮与高速率传输的传感器网络等方面&5,&,本文不再论述;在后文中主要集中在特征提取与数据融合、故障诊断与预测推理、以性能评价及保障决策等方面,对#$%技术的发展进行分析。图&!故障诊断与故障预测流程,678&!

9、)697:;9:?A;7:;BCA;7:6=6;:F;?BG关于故障诊断与故障预测方法的分类,目前尚不统一,“基于经验、基于趋势、基于模型”4、“基于数据、基于模型”&等分类方法可以见诸文献。本文从故障诊断与故障预测的认知模型出发,依据采信的信息源不同对众多的故障诊断与故障预测方法进行归类分析,以期形成故障诊断与故障预测技术发展的完整图像。!$基于故障状态信息的故障诊断与预测直接采信被观测对象功能及性能信息进行故障诊断,是置信度最高的故障诊断方法,得到了最成功的应用。典型的方法包括电子产品的机上测试(0*D),以及非电子产品功能系统的故障诊断H3I!航!空!学!报第#卷等。本文对具体方法不作说

10、明。虚警率($%)高或不能复现(&()故障多是困扰)*+的一个主要问题。以航空电子为例,美国$,%-./&飞机.00#1.00/年统计,虚警率高达/2,平 均 虚 警 间 隔 飞 行 时 间(3$4)$%)不到.5.#。造成)*+虚警率高的原因,除了)*+系统本身的设计问题外,主要表现为不可复现(&()或重测合格(6+78)等状态.9。&(状态出现的原因一直是近年研究的热点,有专家认为,由于机上与地面工作应力和环境应力的不同,以及拆装过程的影响,使得机上测试状态与地面复测状态存在差异,是导致&(和虚警的一个主要原因.9 1.0。与使用环境数据等进行融合,进行综合诊断,成为提高)*+能力的重要途

11、径。另外,实验证明环境应力对电子产品造成的某些累积损伤也表现为电性能的退化./,:,在现行)*+体系的基础上,采集电性能退化信息,有可能实现对电子产品的故障预测.9,./。!#$基于异常现象信息的故障诊断与故障预测通过被观测对象在非正常工作状态下所表现出来或可侦测到的异常现象(振动、噪声、污染、温度、电磁场等)进行故障诊断,并基于趋势分析进行故障预测。大多数机械产品由于存在明显的退化过程,多采用这种故障诊断与预测方式。基于异常现象信息进行故障诊断与故障预测的一个主要问题是异常信息往往被正常工作噪声所掩盖。例如,采用振动或噪声分析手段对直升机齿轮箱进行故障诊断与预测时,状态异常(轮齿磨损)引起的

12、振动载荷变化可能只有!,;,而正常工作振动载荷可能达到.:!,信噪比为.?=!ABCDEFC GHIJK CJE5FK(.)概率趋势分析模型/,;!此类方法通过异常现象对应的关键参数集,依据历史数据建立各参数变化与故障损伤的概率模型(退化概率轨迹),与当前多参数概率状态空间进行比较,进行当前健康状态判断与趋势分析。通过当前参数概率空间与已知损伤状态概率空间的干涉来进行定量的损伤判定,基于既往历史信息来进行趋势分析与故障预测。概率趋势分析模型已用于涡轮压缩机气道等的故障预测,主要监控效率、压缩比、排气温度、燃油流量等;个参数;。图;为双参数状态空间下,压缩机健康状态演化图,2 及;2 的点代表了

13、已知的相应损伤的概率空间,椭圆为概率分布等高线。图;!概率趋势分析模型$?;!LMFGHGNIEO EMJPK HPHNBII CFKJN()神经网络(%)趋势分析模型/,.,!此类方法利用%的非线性转化特征,及其智能学习机制,来建立监测到的故障现象与产品故障损伤状态之间的联系。利用已知的“异常特征故障损伤”退化轨迹,或通过故障注入(IJJKJK QHRNE)建立与特征分析结果关联的退化轨迹,对%模型进行“训练,学习”;然后,利用“训练,学习”后的%依据当前产品特征对产品的故障损伤状态进行判断。由于%具有自适应特征,因此可以利用非显式特征信息来进行“训练,学习”与故障损伤状态判断。/#!第 期

14、曾声奎等:故障预测与健康管理(#$%)技术的现状与发展!(&)基于系统模型进行趋势分析&,!此类方法利用建立被观测对象动态响应模型(包括退化过程中的动态响应),针对当前系统的响应输出,进行参数辨识,对照正常状态下的参数统计特性,进行故障模式确认、故障诊断和故障预测(图)。这种方法提供了一种不同于概率趋势分析、()的途径,具有更高的置信度和故障早期预报能力。图!基于系统模型的趋势分析模型*+,-!./0123 34526789025 1:2;5 9;96/0+0 34526例如,针对机电式作动器((?建立 B.)、扭矩常数(=A)、电机温度(%=)作为关键参数进行故障预测。*A 变化对作动筒响应

15、的影响如图 所示。!#$基于使用环境信息的故障预测由于电子产品尚无合适的可监测的耗损参数和性能退化参数、故障发生进程极短(毫秒级)等原因C,电子产品的寿命预测一直是一个难点。由美国马里兰大学 A(A A%)”方法论D,E是目前主要发展方向。A%方法论(图 D)采信的是环境信息,基于电子产品的失效物理模型,通过环境应力和工作应力监测,进行累计损伤计算,进而推断产品的剩余寿命。图 D!A%方法*+,-D!A%321F45464,/A%方法论的基础是对产品对象失效模式、失效机理的透彻了解,并建立量化的失效物理模型。电子产品(特别是电子元器件)的失效物理研究已有 GH 年的历史,积累了丰富的模型,典型

16、的模型包括焊点疲劳、电迁移、热载流子退化、时间相关介电质击穿(=?)、锡须、导电细丝形成(A*)等I。A%方法论已用于航天飞机火箭助推器电子组件J、航天飞机远距离操作系统(.K%.)电子组件&H、L.*飞机电源开关模块和 AM A 转换器&C、航空电源&等的寿命预测,取得了良好的效果。A%方法论事实上也适用于机械产品,目前已尝试在美军轮式地面车辆&、直升飞机齿轮箱中的正齿轮和蜗杆&G等机械产品中应用。%&$基于损伤标尺的故障预测所谓损伤标尺(N:2OP:04:),是针对一种或多种故障机理,以被监控产品相同的工艺过程制造出来的、预期寿命比被监控对象短产品。基于对被监控对象特定失效机理的认识,损伤标尺可以做到定量设计。通过一系列不同健壮程度的损伤标尺,可以实现电子产品损伤过程的连续定量监控,解决 A%方法累计损伤程度难以证实的问题。基于损伤标尺的故障预测可以在器件内和电路板级进行。器件内的损伤标尺,目前已有商业化的产品。针对静电损伤(.)、=?、电迁移、热载流子、辐射损伤等失效机理,做到了在宿主器件剩余 HQ寿命时失效&。目前国外军品器件大量断档的现实,为器件内的损伤标尺开辟了更大的应用空

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1