1、测控系统设计课程设计说明书温度检测显示及报警装置设计及制作六位数码管显示课程设计说明书2015-2016学年第2学期学 院:自动化工程学院专 业:测控技术与仪器学 生 姓 名:刘鑫月学 号:2班 级:测控133课程设计名称:测控系统设计课程设计题目:温度检测显示及报警装置设计与制作起 迄 日 期:2016年5月 23 日6月 3 日课程设计地点:主教5楼指 导 教 师:赵君、关硕系主任:陈东升第1章绪 论1.1课题背景温度是一个和人们生活环境密切相关物理量,也是在其他研究、生产、科研、生活中需要测量和控制的物理量,同时也是最基本的环境参数。人们的生活与坏境温度息息相关,物理、化学、生物等科学都
2、离不开温度。温度的高低直接影响人们的生活质量和身体健康,许多电子设备都有额定温度单位,没有合适的温度会使电子产品造成故障。在电厂的生产运行过程中,温度是锅炉生产蒸汽质量的重要指标之一,也是保证锅炉设备安全的重要参数。同时,温度是影响锅炉传热过程和设备效率的主要因素。因此温度检测对于保证锅炉的安全、经济运行,提高蒸汽产量和质量,减轻工人的劳动强度,改善劳动条件具有极其重要意义。在实际的生产环境下,由于系统内部与外界的热交换是难以控制的,其他热源的干扰也是无法精确计算的,因此温度量的变化往往受到不可预测的外界环境扰动的影响。因此,对温度的监测和控制具有非常重要的意义。1.2课题意义各种温度传感器和
3、单片机被引入到测温系统中,这不仅使得测温更加精确,而且满足了不同环境对测量系统的要求。通过单片机对温度传感器采集到的数据进行转换测温系统中的显示部分可以实时显示环境中的温度,单片机还可以对温度进行保存、控制、运算等等。测温技术在生产过程中,产品质量控制和监测,设备在线故障诊断和安全保护以及节约能源等方面都发挥着重要作用。使用自动温度控制系统可以对生产环境的温度进行自动控制,保证生产的自动化、智能化能够顺利、安全进行,从而提高企业的生产效率。第2章设计题目介绍2.1 设计目的测控系统技术是自动控制理论和微型计算机原理和接口等技术在工业生产过程中实现自主测量自动控制的专门技术,其以自动控制理论为基
4、础,以电子技术、传感器原理、计算机原理及接口等课程内容为辅助,通过对测控系统的设计实践环节培养学生理论应用能力、总结归纳能力以及自我学习能力,从而进一步提高学生工程实践能力和创新意识的培养。2.2 设计要求设计并开发能自动测温并具有显示和报警系统的温度测量控制系统,要求以18b20做为温度测量传感器,以数码管、点阵、1602、全彩TFT屏做为温度等信息显示装置,以蜂鸣器为报警装置,能实现实时温度显示、温度上下限设定、温度上下限报警等功能。具体功能要求如下:(1)单片机开发仪提供的18b20温度传感器做为温度采集传感器。对温度进行实时采集。(2)本组(第一组)使用数码管做为信息显示装置。(3)显
5、示内容要求如下:实时显示当前温度。对上下限进行设定时显示设定值。(要求显示的设定值能随按键按下而变化)温度高于上限或低于下限时显示屏有相应显示。(报警显示内容可自定)(4)使用按键或4*4键盘做为输入设备,用于设定报警上下限。(5)使用蜂鸣器做为报警装置,低于下限时短鸣3次为一组报警,每组报警之间有一定间隔,直至温度高于下限,2秒长鸣后表示已高于下限;高于上限是持续长鸣,直至低于上限时,短鸣3次示意已低于上限。(6)可拓展其他功能做为发挥部分2.3设计工作任务及工作量的要求1.课程设计报告(由“题目背景与意义”、“设计题目介绍”、“系统总体框架”、“系统硬件设计”、“系统软件设计”、“结论”六
6、个部分组成 );2.课程设计任务书;3.系统硬件原理图;4.系统软件流程图;5.工作进程日记。第3章 系统总体框架3.1 系统总体设计本系统由AT89C52单片机、DS18B20温度检测部分、七段六位数码管显示部分、按键输入部分和蜂鸣器报警部分组成。DS18B20采集环境温度并保存在存储器中通过单片机将温度显示在数码管上。按键调整报警的温度上下限,当温度低于下限或高于上限时蜂鸣器报警。图3-1 系统设计原理图3.2 总体设计方案1.采用DS18B20作为温度传感器进行温度测量。DS18B20可以满足从-55摄氏度到+125摄氏度测量范围,在一秒内把温度转化成数字,测得的温度值的存储在两个八位的
7、RAM中,单片机直接从中读出数据转换成十进制就是温度。2.温度显示采用七段六位数共阴码管,它的引线已在内部连接完成,只需引出它们的各个笔划,公共电极,数码管广泛用于仪表,时钟,车站,家电等场合。仪表数码管的应用代替了老套旧式的指针仪表,指针表精度低,测量不精确,精度只能在1-1.5之间,然后用数码管代替的数显仪表运用其高科技手段,精度可以达到0.1-0.5之间,是个很大的飞跃。3.按键的选择四个普通按键,分别作为上限加键、上限减键、下限加键、下限减键。4.单片机选用AT89C52,是一个低电压,高性能CMOS 8位单片机,其将通用的微处理器和Flash存储器结合在一起,特别是可反复擦写的 Fl
8、ash存储器可有效地降低开发成本。图3-2系统设计流程图第4章 系统硬件设计4.1硬件总体设计方案4.1.1硬件设计目标本系统中通过温度传感器DS18B20的数据线DQ与主控芯片单片机的P3.7相连接,DS18B20将采集到的数据送给单片机,经过单片机出来后,数码管显示14位数据线连接到单片机的P0、P2口上。蜂鸣器经过三极管的驱动后,接到单片机实现当实时温度低于下限或高于上限的报警。四个按键实现对上限值和下限值的查看与设定。4.1.2接口和连接方式定义1.数码管的段选端A、B、C、D、E、F、G、DP接到单片机P0口,位选端接到单片机的P2.0P2.5口。2.按键接到单片机的P1.0P1.3
9、。3.蜂鸣器接到单片机的P1.7。4.DS18B20的DQ接到单片机的P3.7。4.2单片机最小系统单片机最小系统,或者称为最小应用系统,是指用最少的元件组成的单片机可以工作的系统对51系列单片机来说,最小系统一般应该包括:单片机、晶振电路、复位电路。下面给出一个51单片机的最小系统电路图。图4-1单片机最小系统4.2.1复位电路复位电路:单片机复位电路就好比电脑的重启部分,当电脑在使用中出现死机,按下重启按钮电脑内部的程序从头开始执行。单片机也一样,当单片机系统在运行中,受到环境干扰出现程序跑飞的时候,按下复位按钮内部的程序自动从头开始执行。本次电路设计复位单路由电容串联电阻构成,选取电容的
10、的大小是10uF,电阻的大小是10k。所以根据公式,可以算出电容充电到电源电压的0.7倍(单片机的电源是5V,所以充电到0.7倍即为3.5V),需要的时间是10K*10UF=0.1S。图4-2复位电路4.2.2 晶振电路本设计电路系统晶振选用11.0592MHz,单片机最小系统晶振的振荡频率直接影响单片机的处理速度,频率越大处理速度越快。起振电容C1、C2一般采用1533pF,本系统选用22pF。并且电容离晶振越近越容易起振,晶振离单片机越近越好。 图4-3晶振电路4.3测温传感器DS18B20是常用的测温传感器,具有体积小,硬件开销低,抗干扰能力强,精度高的特点。DS18B20数字温度传感器
11、接线方便,封装成后可应用于多种场合,如管道式,螺纹式,磁铁吸附式,不锈钢封装式,型号多种多样,有LTM8877,LTM8874等等。主要根据应用场合的不同而改变其外观。封装后的DS18B20可用于电缆沟测温,高炉水循环测温,锅炉测温,机房测温,农业大棚测温,洁净室测温,弹药库测温等各种非极限温度场合。耐磨耐碰,体积小,使用方便,封装形式多样,适用于各种狭小空间设备数字测温和控制领域。4.3.1 工作原理DS18B20的读写时序和测温原理与DS1820相同,只是得到的温度值的位数因分辨率不同而不同,且温度转换时的延时时间由2s减为750ms。 DS18B20测温原理如图3所示。图中低温度系数晶振
12、的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。图4-4DS18B20工作流程图4.3.2工作特
13、性1.DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。2.DS18B20在使用中不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。3.温范围55+125,在-10+85时精度为0.5。4.可编程的分辨率为912位,对应的可分辨温度分别为0.5、0.25、0.125和0.0625,可实现高精度测温。5.在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最多在750ms内把温度值转换为数字,速度更快。6.测量结果直接输出数字温度信号,串行传送给CPU,同时可传送CRC校验码,具有极强的抗干扰纠错能力。7.负压特
14、性:电源极性接反时,芯片不会因发热而烧毁,但不能正常工作。8.DS18B20可以使用外部电源VDD,也可以使用内部的寄生电源。在使用内部寄生电源方式供电时,要想使DS18B20进行精确的温度转换,I/O线必须保证在温度转换期间提供足够的能量。在外部电源供电方式下,DS18B20工作电源由VDD引脚接入,此时I/O线不需要强上拉,不存在电源电流不足的问题,可以保证转换精度。在外部供电的方式下,DS18B20的GND引脚不能悬空 ,否则不能转换温度,读取的温度总是85。图4-518b20温度传感器接线图4.4 显示电路4.4.1七段六位数码管驱动原理数码管要正常显示,就要用驱动电路来驱动数码管的各
15、个段码,从而显示出我们要的数字,因此根据数码管的驱动方式的不同,可以分为静态式和动态式两类。1.静态显示驱动静态驱动也称直流驱动。静态驱动是指每个数码管的每一个段码都由一个单片机的I/O端口进行驱动,或者使用如BCD码二十进制译码器译码进行驱动。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O端口多,如驱动5个数码管静态显示则需要58=40根I/O端口来驱动,而一个AT89C52单片机可用的I/O端口才32个,实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。2.动态显示驱动数码管动态显示接口是单片机中应用最为广泛的一种显示方式之一,动态驱动是将所有数码管的8个显示笔划“a,b,c,d,e,f,g,dp”的同名端连在一起,另外为每个数码管的公共极COM增加位选通控制电路,位选通由各自独立的I/O线控制,当单片机输出字形码时,所有数码管都接收到相同的字形码,但究竟是哪个数码管会显示出字形,取决于单片机对位选通COM端电路的控制,所以我们只要将需要显示的数码管的选通控制打开,该位就显示出字形,没有选通的数码管就不会亮。通过分时轮流控制各个数码管的的COM端,就使各个数码管轮流受
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1