1、七年级数学上册常考易错21个知识点汇总一、数轴1.数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴数轴的三要素:原点,单位长度,正方向。2.数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数。)3.用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。二、相反数1.相反数的概念:只有符号不同的两个数叫做互为相反数。2.相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。3.多重符号的化简:与“+”个数无关,有奇数个“”
2、号结果为负,有偶数个“”号,结果为正。4.规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“”,如a的相反数是a,m+n的相反数是(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。三、绝对值1.概念:数轴上某个数与原点的距离叫做这个数的绝对值。互为相反数的两个数绝对值相等;绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数;有理数的绝对值都是非负数。2.如果用字母a表示有理数,则数a 绝对值要由字母a本身的取值来确定:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数a;当a是零时,a的绝对值是零即|a|=a(a
3、0)0(a=0)a(a0)。四、有理数大小比较1.有理数的大小比较比较有理数的大小可以利用数轴,他们从左到有的顺序,即从大到小的顺序(在数轴上表示的两个有理数,右边的数总比左边的数大);也可以利用数的性质比较异号两数及0的大小,利用绝对值比较两个负数的大小。2.有理数大小比较的法则:法则比较:正数都大于0,负数都小于0,正数大于一切负数两个负数比较大小,绝对值大的反而小;数轴比较:在数轴上右边的点表示的数大于左边的点表示的数;作差比较:若ab0,则ab;若ab0,则ab;若ab=0,则a=b。五、有理数的减法有理数减法法则减去一个数,等于加上这个数的相反数。即:ab=a+(b)方法指引:在进行
4、减法运算时,首先弄清减数的符号;将有理数转化为加法时,要同时改变两个符号:一是运算符号(减号变加号);二是减数的性质符号(减数变相反数);注意:在有理数减法运算时,被减数与减数的位置不能随意交换;因为减法没有交换律。减法法则不能与加法法则类比,0加任何数都不变,0减任何数应依法则进行计算。六、有理数的乘法1.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。2.任何数同零相乘,都得0。3.多个有理数相乘的法则:4.方法指引:运用乘法法则,先确定符号,再把绝对值相乘;多个因数相乘,看0因数和积的符号当先,这样做使运算既准确又简单。七、有理数的混合运算1.有理数混合运算顺序:先算乘方,
5、再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算。2.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化。有理数混合运算的四种运算技巧:转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算;凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解;分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便。八、科学记数法表示较大的数1.科学记数法:
6、把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法。(科学记数法形式:a10n,其中1a10,n为正整数)2.规律方法总结:科学记数法中a的要求和10的指数n的表示规律为关键,由于10的指数比原来的整数位数少1;按此规律,先数一下原数的整数位数,即可求出10的指数n;记数法要求是大于10的数可用科学记数法表示,实质上绝对值大于10的负数同样可用此法表示,只是前面多一个负号。九、代数式求值1.代数式的值:用数值代替代数式里的字母,计算后所得的结果叫做代数式的值;2.代数式的求值:求代数式的值可以直接代入、计算如果给出的代数式可以化简,要先化简
7、再求值。题型简单总结以下三种:已知条件不化简,所给代数式化简;已知条件化简,所给代数式不化简;已知条件和所给代数式都要化简。十、规律型:图形的变化类首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解。探寻规律要认真观察、仔细思考,善用联想来解决这类问题。十一、等式的性质1.等式的性质性质:1 等式两边加同一个数(或式子)结果仍得等式;性质2 等式两边乘同一个数或除以一个不为零的数,结果仍得等式。2.利用等式的性质解方程利用等式的性质对方程进行变形,使方程的形式向x=a的形式转化。应用时要注意把握两关:怎样变形;依据哪一条,变形时只有做到步步有
8、据,才能保证是正确的。十二、一元一次方程的解定义:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解。把方程的解代入原方程,等式左右两边相等。十三、解一元一次方程1.解一元一次方程的一般步骤去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x=a形式转化。2.解一元一次方程时先观察方程的形式和特点,若有分母一般先去分母;若既有分母又有括号,且括号外的项在乘括号内各项后能消去分母,就先去括号。3.在解类似于“ax+bx=c”的方程时,将方程左边,按合并同类项的方法并为一项即(a+b)x=c。使方程逐渐转化为a
9、x=b的最简形式体现化归思想。将ax=b系数化为1时,要准确计算,一弄清求x时,方程两边除以的是a还是b,尤其a为分数时;二要准确判断符号,a、b同号x为正,a、b异号x为负。十四、一元一次方程的应用1.一元一次方程解应用题的类型:探索规律型问题;数字问题;销售问题(利润=售价进价,利润率=利润进价100%);工程问题(工作量=人均效率人数时间;如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);行程问题(路程=速度时间);等值变换问题;和,差,倍,分问题;分配问题;比赛积分问题;水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度水流速度)。2.利用方程解决实际问题的基
10、本思路首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。列一元一次方程解应用题的五个步骤审:仔细审题,确定已知量和未知量,找出它们之间的等量关系;设:设未知数(x),根据实际情况,可设直接未知数(问什么设什么),也可设间接未知数;列:根据等量关系列出方程;解:解方程,求得未知数的值;答:检验未知数的值是否正确,是否符合题意,完整地写出答句。十五、正方体相对两个面上的文字1.对于此类问题一般方法是用纸按图的样子折叠后可以解决,或是在对展开图理解的基础上直接想象;2.从实物出发
11、,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键;3.正方体的展开图有11种情况,分析平面展开图的各种情况后再认真确定哪两个面的对面;十六、直线、射线、线段1.直线、射线、线段的表示方法直线:用一个小写字母表示,如:直线l,或用两个大写字母(直线上的)表示,如直线AB;射线:是直线的一部分,用一个小写字母表示,如:射线l;用两个大写字母表示,端点在前,如:射线OA注意:用两个字母表示时,端点的字母放在前边;线段:线段是直线的一部分,用一个小写字母表示,如线段a;用两个表示端点的字母表示,如:线段AB(或线段BA)。2.点与直线的位置关系
12、:点经过直线,说明点在直线上;点不经过直线,说明点在直线外。十七、两点间的距离1.两点间的距离:连接两点间的线段的长度叫两点间的距离。2.平面上任意两点间都有一定距离,它指的是连接这两点的线段的长度,学习此概念时,注意强调最后的两个字“长度”,也就是说,它是一个量,有大小,区别于线段,线段是图形线段的长度才是两点的距离可以说画线段,但不能说画距离。十八、角的概念1.角的定义:有公共端点是两条射线组成的图形叫做角,其中这个公共端点是角的顶点,这两条射线是角的两条边。2.角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点
13、处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角角还可以用一个希腊字母(如,、)表示,或用阿拉伯数字(1,2)表示。3.平角、周角:角也可以看作是由一条射线绕它的端点旋转而形成的图形,当始边与终边成一条直线时形成平角,当始 边与终边旋转重合时,形成周角。4.角的度量:度、分、秒是常用的角的度量单位1度=60分,即1=60,1分=60秒,即1=60。十九、角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线。AOB是AOC和BOC的和,记作:AOB=AOC+BOCAOC是AOB和BOC的差,记作:AOC=AOBBOC。若射线OC是AOB的三等分线,则AOB=
14、3BOC或BOC=13AOB。二十、度分秒的运算1.度、分、秒的加减运算。在进行度分秒的加减时,要将度与度,分与分,秒与秒相加减,分秒相加,逢60要进位,相减时,要借1化60。2.度、分、秒的乘除运算:乘法:度、分、秒分别相乘,结果逢60要进位。除法:度、分、秒分别去除,把每一次的余数化作下一级单位进一步去除。1.由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状。2.由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法。
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1