ImageVerifierCode 换一换
格式:DOCX , 页数:26 ,大小:74.97KB ,
资源ID:30708224      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/30708224.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(商品房还贷.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

商品房还贷.docx

1、商品房还贷摘要本文针对购房还贷问题进行了讨论。我们通过上网搜索了相关知识,依据每个问题中的不同情况,建立相应的模型进行求解,并运用Lingo软件对数据进行处理,给出了各种情况下的购房还贷优化方案。针对问题一,通过分析我们建立了差分方程模型,求解出每月还款额公式:X = A(1+)m/(1+)m-1并推算出每月被银行拿走利息的计算公式 :,最后用lingo编程求解出一万元借贷十年的还款总额为13164.828以及逐月被银行拿走的利息钱见表5.1.1。针对问题二,因等额本息还贷比较适合收入稳定的工薪阶层。所以我们采用等额本息还款模式,然后分别建立十年还贷、五年还贷以及是否提前还款不同情况下的模型,

2、通过对比得出贷款33万用54个月还清的最优方案。其中2007年3月10日志2011年3月10日月消费上限为2250元,2011年3月10日至2012年3月10日的月消费上限为3090元。针对问题三,在王先生及其外甥A收入、开销、年终奖及现有可支配金额都不相同的条件下,我们把王先生及其外甥两家当做一个整体,以还贷总利息最小作为目标建立模型,设计出最优方案,然后将节省下来的利息合理分配到两家,达到使两家都满意的效果。针对问题四,在问题三的基础上对模型进行修整,仍将王先生及其六个外甥看做一个整体,将各个家庭收入、开销及年终奖等合并到一起,然后以最大额度用于首付,使贷款最小,已取得利息最少的目的。通过

3、具体计算得出六个外甥各向银行贷款贷款121624.5元、还贷期限均为3年、并且每次年终奖都用于提前还款的最优还贷方案,此方案总共向银行支付利息80935.4元,总共节约了103040.5元。针对问题五,根据题中所给数据,运用有效投资组合,对各个项目的收益率、方差进行计算,并使用MATLAB编程进行求解,然后将投资三个项目的收益与银行贷款付息相比,判断方案可行,最终确定对项目甲投资43.5万元、项目乙投资6.5万元,年收益为25099.582775元的最优方案。关键词: 等额本息 差分方程 有效投资组合 Lingo、MATLAB软件一、问题重述购房策略问题问题背景:近些年来,我国商品房销售火爆。

4、由于升值潜力大,不少人愿意投资于房产。但是,高位的房价又迫使大多数人不得不向银行贷款。然后,用按揭的方式逐月偿还银行贷款额。注意:向银行借贷时间必须以年为单位,如1年、2年、3年.等。问题提出:第一问:2007年9月1号,某高校教师王先生到某商品房去看房,销售小姐向他推荐等额本息还款方式,并给他一个银行还贷明细表。这个明细表给出了若向银行借了1万元钱、不同年限的等额房贷还款额。王先生不知还款公式怎样写,请你给出等额本息房贷还款公式,帮王先生解惑。如果向银行借1万元,借10年。请详细计算逐月还完1万元后,总共向银行还款的总额以及逐月被银行拿走的利息钱。表1 借银行1万元为例每月等额房贷还款明细表

5、:年限实际还款年利率%月利率%月还款(元)15.5080.4590858.4025.5080.4590440.9935.5080.4590302.0045.5080.4590232.6055.5080.4590191.05105.73750.478125109.71155.73750.47812582.97205.73750.47812570.14第二问:王先生看中了一套135m2、单价为3230/m2的房子,准备9月10号前成交。他们家每月收入5600元,每月家庭开销在1500-3000元之间服从均匀分布,每年还有3万元的年终奖金。这时候王先生手头有15万元的可支配的现金,现在请你建立一套详

6、细的购房与商贷快速计算还贷数学模型,并为王先生设计还贷方案而且要指出每月的家庭开销上限(注:首付不得低于20%)。第三问:但事情有变:2008年3月10号,王先生经多方筹措,借到了无息的款项20万(包括年终奖金3万),准备提前还款,但其外甥A此时在本地购买了总房价为20万的房子,但首付不得低于40%,但外甥A手头只有可支配现金5万元,每月全家收入3500元,每月家庭开销在1500-2000元之间也服从均匀分布。她来向王先生借钱买房,王先生很为难,但此时,聪明的王夫人给出了一套新方案,使两家人购房均欢欣鼓舞,你能给出这个新方案吗?第四问:但这事还未开始实施就被王先生其他五个外甥知道了,均想加入这

7、一方案,并准备在3月份都购买房子,他们购买房子的总价以及他们的经济情况见表2。那么,王夫人怎样设计这7套房子的购房还贷及每个家庭的每月开销上限呢?请你帮她拿出详细的方案。即每套房子向银行贷款多少年、多少钱、是否提前还款及还款多少、总共向银行交了多少利息钱、这种方案总共节约了多少钱等等。表1:借银行1万元为例每月等额房贷还款明细表:购买房子的总价手头可支配的现金每月开销(均匀分布)每月家庭总收入首付最低比例年终奖外甥B35万15万1500-2000元5000元30%2万元外甥C30万20万1200-1800元4000元30%0万元外甥D15万10万1000-1500元3500元40%3万元外甥E

8、25万8万1200-1500元4500元30%0万元外甥F20万9万800-1200元3000元40%5万元第五问:王先生拿到方案后,觉得应该多向银行借钱,想把尽量多的钱拿出来投资三个项目,但遭到其他人的反对,你支持王先生的观点吗?请说明理由。如果你支持王先生的观点,问最多可拿多少钱投资这三个项目,各投资多少?表3 三种项目(甲、乙、丙)12年中后一年相对于前一年资产每年的增长情况年份项目甲项目乙项目丙19961.3001.2251.14919971.1031.2901.26019981.2161.2161.41919990.9540.7280.92220000.9291.1441.16920

9、011.0561.1070.96520021.0381.3211.13320031.0891.3051.73220041.0901.1951.02120051.0831.3901.13120061.0350.9281.00620071.1761.7151.908注:例如1996年项目甲1.300的意思是:1996年项目甲的最后资产是1995年最后资产的1.3倍,其他类推。四、问题分析4.1 问题一的分析:通过上网查阅相关知识,我们了解到等额本息还贷规则,建立差分方程模型推导出每月还款金额公式以及逐月还款利息公式,最后运用Lingo对数据进行处理,得出逐月还款利息。4.2 问题二的分析:由题目可

10、知,王先生买的房子总价436050元,首付不得低于87210元。每个月净收入在26003100元,每年还有三万的年终奖金。首先将等额本息还款和等额本金还款两种不同还款模式进行分析比较,通过上网查阅资料我们了解到:等额本息还款就是按按揭贷款的本金总额与利息总额相加,然后平均分摊到还款期限的每个月中。作为还款人,每个月还给银行固定金额,但每月还款额中的本金比重逐月递增、利息比重逐月递减,适合收入稳定的群体 。等额本金还款方式将本金分摊到每个月内,同时付清上一还款日至本次还款日之间的利息。借款人可随还贷年份增加逐渐减轻负担,适合目前收入较高的人群。考虑到王先生家庭收入稳定,并且每月收入并不是很高,因

11、此我们采用等额本息还款模式,然后通过计算将不同贷款年限以及贷款金额不同的情况作对比,并考虑提前还款对方案作具体调整,最终得出最优还贷方案。4.3 问题三的分析:王先生至少要借给外甥3万元,外甥才足以支付买房首付。要使得两家人对方案都满意,就要使付给银行的利息最少。因此,我们可以把王先生及其外甥两家合并到一起,通过具体计算对比出可支配现金如何分配才能使支付银行的利息达到最少,确定最优方案。然后将节省下来的钱按两家节省利息的比列分配给两家,以达到两家收益平衡。4.4 问题四的分析:在问题三的基础上对模型进行修整,仍将王先生及其六个外甥看做一个整体,将各个家庭收入、开销及年终奖等合并到一起,然后以最

12、大额度用于首付,使贷款达到最少,已取得利息最少的目的。4.5 问题五的分析:首先要考虑到投资三个项目与银行贷款付息相比是否获利,若获利,获利多少,在获利的情况下,贷款越多越好。高利率存在高风险,在有风险的情况下,应该选择哪个投资项目。先算出每个项目的获利情况、风险大小、利率曾长趋势,综合三个因素,确定最优投资方案。二、模型假设(1) 假设还款期限不受外界因素的影响。(2) 假设货币价值在贷款期限内不受外界因素影响,即不会发生升值或贬值。(3) 假设在贷款期限内利率固定不变,不受经济危机、通货膨胀等因素的影响。(4) 假设每个月的收入只用于月开销与还款,不用于其他方面。(5) 假设王先生以及各个

13、外甥的年终奖金都在每年3月10号发放。(6) 假设年终奖金在每年3月10日发。(7) 假设没有其他意外收入来源。三、符号说明A:贷款总额 :贷款后第k个月时欠款余数m:贷款时间(月) :贷款总利息:贷款月利率 X:月还款数:每个月的还款利息五、模型建立与求解5.1 问题一的模型建立与求解:5.1.1模型建立 根据题意并查阅相关资料我们知道,若贷款总额为A,月利率为,贷款年限为n,总期数为m(个月),每月还贷金额为X,为第K个月还贷后的本息和,则第一个月: 第二个月: 第K个月:第K+1个月: 5.1.2模型求解 针对本题,我们主要是为了求解每月的还款额m,因此我们令各个月还款之后所欠银行贷款为

14、:第一个月: A(1+)-X第二个月: A(1+)-X(1+)-X = A(1+)2-X1+(1+)第三个月: A(1+)-X(1+)-X(1+)-X = A(1+)3-X1+(1+)+(1+)2由此可得第n个月后所欠银行贷款为:A(1+)n-X1+(1+)+(1+)2+(1+)(n-1) = A(1+)n-X(1+)n-1/由于还款总期数为m,也即第m月刚好还完银行所有贷款,因此有:A(1+)m-X(1+)m-1/ = 0由此求得:X = A(1+)m/(1+)m-1即 月还款额= 。逐月利息公式为:如果向银行贷款1万元,贷款期限为10年。我们运用Lingo编程求解得出还款总额为13164.

15、828元,其中逐月被银行拿走的利息钱见下表一:(表一)年月第一年第二年第三年第四年第五年第六年第七年第八年第九年第十年1月47.8144.1740.3136.2231.8927.322.4517.3111.876.1032月47.5243.8539.9735.8731.5226.9122.0316.8711.45.6083月47.2243.5439.6435.5131.1426.5121.6116.4210.935.114月46.9243.2239.3135.1630.7726.1221.1915.9810.464.615月46.6242.938.9734.830.3925.7220.7715

16、.539.9824.1076月46.3242.5838.6334.4430.0125.3220.3415.089.5053.6037月46.0242.2638.2934.0829.6324.9119.9214.639.0263.0958月45.7141.9437.9533.7229.2524.5119.4914.178.5452.5869月45.4141.6237.6133.3628.8624.119.0613.728.0612.07310月45.141.2937.2632.9928.4723.6918.6213.267.5751.55911月44.7940.9636.9232.6328.09

17、23.2818.1912.87.0871.04212月44.4840.6436.5732.2627.722.8717.7512.336.5960.5225.2问题二的模型建立与求解:模型一: 我们首先将模型极端化,贷款期限定为十年,首付15万,家庭开销均在1500元,贷款金额为29万。则每个月还款3138.3元,每年一拿到年终奖金就马上提前还款,每次提前还款为一个阶段,这样我们可以粗略的计算一下:还款数额=次阶段每月还款数*此阶段包含的月数模型一日期分月总还款每月还款提前还款剩余还款金额阶段总利息07.9.10-08.3.1019088.9943181.49935511.006250448.1

18、3238189.81908.3.10-09.3.1032971.0562745.5846229.04183479.11113872.41909.3.10-10.3.1024154.7042012.89255045.296113239.55710162.977810.3.10-11.3.1014907.7921242.31664292.20839569.7616272.382111.3.10-12.3.105209.29434.10873990.70401838.5567从第五阶段来看,按十二个月还款,然后再进行提前还款,所剩金额为37697.798表明,我们可以不用等到发年终奖金在进行提前还款

19、,令36292.906-41000*x= 0 x=9.6 解得x=10,即第10个月时,就可以还完全部贷款。阶段总利息:1838.5567总利息:40336.1546总还款:333702.292时间共用:52个月从模型一首先可以看出:(1)题目中给出,家庭开销在1500-3000元之间服从均匀分布,限制家庭开销,显然有些不合情理,如果使家庭开销在1500-3000元之间且服从均匀分布,又会增加还款时间,导致利息曾多。(2)十年还款期限,仅用了52个月,即不到五年的时间,就还完了全部贷款。十年贷款,因为还款时间加长使得利息增多,这时应该考虑设置还款时间为五年。(3)将还款总额、总利息相加,与五年

20、相比较见表(2),得出只要调整一下五年方案的首付,就可以看到五年方案优于十年方案,并且通过合理计算,与四年、六年相比较,得到五年还款方案是较优方案。(4)我们以十年的年限还清贷款,若首付87210元,则每个月还款109.71*(436050-87210)/10000= 3827.1元,我们按上面的简单计算会发现这样还款会使还款的利息增加,比上面的还款总额还要多。因此,还贷期限定位十年是不理智的。表(2)五年还款方案与十年还款方案表总还款额(元)总利息(元)月还款额(元)若无提前还款十年381779.9291779.923181五年332424.4842424.485540提前还款十年33176

21、9.85740336.1546不同阶段不等五年模型二:我们以五年的年限还清贷款,首付介于87210与150000之间;头六个月至少每个月要还款(436050-150000)*191.05/10000=5465元,最大还款额(436050-87210)*109.71/10000=6664.6元,由于家庭收入5600,家庭开销1500到3000且服从均匀分布,这样一来我们可以先把所有的月家庭开销相加,除以月数,就得到了每月家庭开销的平均值,但每月家庭开销是不确定的,且月数也是不确定的,知道家庭开销服从均匀分布,所以,先将家庭开销定为2250即均匀分布的期望值,而将15万分为两个部分:首付、可临时调

22、配资金。我们将第一阶段还款设为六个月,以后以年计数(即12个月),直到还清贷款。假设每年一拿到年终奖金就马上顺利提前还款,这样一来每提前还款一次后还款计划将会改变一次,每改变一次后下一年的每个月还款金额减小,直到当年每月还款小于3350元时,每个月就可以预留一部分资金,到年终和年终奖金一起作为提前还款的金额;这样,在五年之内就可以还清所有欠款,我们有理由认为这是一个较优方案,然后将方案进一步进行优化。通过以下条件及约束:我们可以求出首付在106050-110000元之内都较为合理,所以将106050元作为首付,剩余现金作为用来填补以后每个月不够的还款差额,贷款330000元。具体数据如下:模型

23、二日期分月总还款每月还款提前还款剩余还款金额阶段总利息07.9.10-08.3.1037827.6126304.602266005.2130000875608.3.10-09.3.1060983.8925081.9911884406.33000013463.82609.3.10-10.3.1042276.6723523.056118635.73300009333.709710.3.10-11.3.1027198.2162266.51852621.3543001.7846004.734811.3.10-12.3.1012063.8761005.3230424142428.996在第五阶段的一次性

24、还完所有贷款后,还有可支配资金10082元,也就表明,王先生在还款期间,还有10082元的可调配资金,所以,开销上限可以为:3090综上:此方案首付106050元,贷款33万元,用54个月还清,总还款369987.1901,总利息39987.1901。其中2007年3月10日至2011年3月10日月消费上限为2250元,2011年3月10日至2012年3月10日的月消费上限为3090元。5.3问题三的模型建立与求解:基于问题二设计的最优还贷方案(首付106050元,贷款33万元,月还款6304.6元),此时(2008年3月10号)王先生已还款6304.6*6=37827.6元,月消费取中位数来

25、算,剩余可支配现金为:200000+43956+(5100-2250)*6-37827.6=226228.4元倘若王先生开始只借3万元给外甥,则外甥必须贷款12万元,考虑到外甥的还款能力只能按照十年期限还贷,则总共还款157977.84元,支付银行的利息为37977.84元。显然由于贷款期限过长导致利息太多。我们把王先生及其外甥看做一个整体,用手上可支配现金将外甥房款一次性付完, 此时剩余可支配现金总共为76228.4元,全部用于王先生提前还款,则剩余欠款为:330000*(1+0.00459)6-6304.6*(1+0.00459)6-1)/0.00459-76228.4=224700.39

26、元。2008年3月10日 2009年3月10日:每月还款额: 4292.868元每月收入:3500+5600=9100元每月消费:30005000元,取其中位数4000元则至2009年3月10日剩余欠款为:224700.39*(1+0.00459)12-4292.868*(1+0.00459)12-1)/0.00459=184559.16元可支配现金为:(9100-4000-4292.868)*12+30000=39685.58元全部用于提前还款后,则剩余欠款为144873.52元。2009年3月10日 2010年3月10日:每月还款额: 2767.78元每月收入:3500+5600=9100

27、元每月消费:30005000元,取其中位数4000元则至2010年3月10日剩余欠款为:144873.52*(1+0.00459)12-2767.7*(1+0.00459)12-1)/0.00459=118993.90元可支配现金为:(9100-4000-2767.78)*12+30000=57986.64元全部用于提前还款后,则剩余欠款为61007.26元。2010年3月10日 2011年3月10日:每月还款额: 1165.53元每月收入:3500+5600=9100元每月消费:30005000元,取其中位数4000元则至2011年3月10日剩余欠款为:61007.26*(1+0.00459

28、)12-1165.53*(1+0.00459)12-1)/0.00459=50108.77元可支配现金为:(9100-4000-1165.53)*12+30000=77213.64元至此可将欠款一次性还清。此方案为外甥节省了37977.84元的利息,但是由于王先生将大部分可支配现金用于支付外甥的房款,导致自己提前还款说额减少,相应还款期限就会有所加长,随之带来利息增多的结果。因此,我们将外甥节省的利息一半分配给王先生,及外甥还款时多还约19000元,已达到是两家都满意的效果。5.4问题四的模型建立与求解:在问题三的基础上,我们把七家人看成一家人,七套房子看成一套房子。现在王先生手上还有余额27

29、491元,另外王先生借到无息款20万元(包括年终奖3万元),全家人现在有可支配现金:26228.4+200000+50000+150000+200000+100000+80000+90000= 896228.4元房子总价为:297600+200000+350000+300000+150000+250000+200000= 1747600元首付至少:200000*0.4+350000*0.3+300000*0.3+150000*0.4+250000*0.3+200000*0.4= 490000元每月总收入:5600+3500+5000+4000+3500+4500+3000= 29100元每月总开销:在1500+1500+1500+1200+1000+1200+800=8700到30

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1