ImageVerifierCode 换一换
格式:DOCX , 页数:39 ,大小:63.94KB ,
资源ID:30553266      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/30553266.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(基础分子生物学习题大全.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

基础分子生物学习题大全.docx

1、基础分子生物学习题大全基础分子生物学习题第一章1什么是分子生物学?广义的分子生物学:蛋白质及核酸等生物大分子结构和功能的研究都属于分子生物学的范畴,即从分子水平阐明生命现象和生物学规律。狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控等过程,当然也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。2列举分子生物学发展历程中的10个重大事件。1944年,著名微生物学家Avery等在对肺炎双球杆菌的转化实验中证实了DNA是遗传物质。1953年,Waston和Crick提出了DNA双螺旋模型。1954年,Gamnow从理论上研究了遗传密码的编码规律,后来

2、Nirenberg等于1961年破译了第一批遗传密码。Crick在前人基础之上提出了中心法则。1956年,A. Kornberg在大肠杆菌中发现了DNA聚合酶I,这是能在试管中合成DNA的第一种核酸酶。1961年,F. Jacob J. Monod提出调节基因表达的操纵子模型。1967年,Gellert发现了DNA连接酶。1970年,Smith和Wilcox等分离得到第一种限制性核酸内切酶。1970年,Temin 和Baltimore在RNA肿瘤病毒中发现逆转录酶。19721973年,H. Boyer和P. Berg等发展了重组DNA技术,并完成了第一个细菌基因的克隆。19751977年,Sa

3、nger、Maxam和Gilbert发明了DNA序列测序技术。1977年第一个全长5387bp的噬菌体 X174基因组测定完成。1981年,Cech等发现四膜虫26S rRNA前体自剪接作用,发现了核酶(ribozyme)。1982年,Prusiner等在感染瘙痒病的仓鼠脑中发现了阮病毒(Prion)。1985年,Saiki等发明了聚合酶链式反应(PCR)。1988年,McClintock发现可移动的遗传因子(转座子)。2001年,RNAi干扰机制的发现。 ,端粒及端粒酶的发现。2006年,成功获得诱导干细胞(iPS细胞)2010年,获得第一个“人造细胞”3简述分子生物学的研究内容研究内容 D

4、NA重组技术(基因工程) 基因的表达调控 生物大分子的结构和功能研究(结构分子生物学) 基因组、功能基因组与生物信息学研究 基因的表达调控 生物大分子的结构和功能研究(结构分子生物学) 基因组、功能基因组与生物信息学研究4根据你所学的知识谈谈分子生物学在生命科学以及社会经济活动中的地位与作用。人口与粮食 ;健康与疾病 ; 环境与生态 ;能源与资源5简述分子生物学发展史中的三大理论发现和三大技术发明。理论: 1940年艾弗里(O.Avery)等人通过肺炎球菌的转化试验证明了生物的遗传物质是DNA,而且证明了通过DNA可以把一个细菌的性状转移给另一个细菌; 1950年沃森(J.D.Watson)和

5、克里克(F.Crick)发现了DNA分子的双螺旋结构及DNA半保留复制机理; 1960年关于遗传信息中心法则的确立。技术: 限制性内切核酸酶; DNA连接酶; 基因载体的发现6. 21世纪是生命科学的世纪。20世纪后叶分子生物学的突破性成就,使生命科学在自然科学中的位置起了革命性的变化。试阐述分子生物学研究领域的三大基本原则,三大支撑学科和研究的三大主要领域? 三大基本原则:构成生物大分子的单体是相同的,共同的核酸语言,共同的蛋白质语言生物遗传信息表达的中心法则相同 生物大分子单体的排列(核苷酸、氨基酸)的不同 三大支撑学科:Cytology、Genetics、Biochemistry研究的三

6、大主要领域:基因的分子生物学:基因的概念、结构、复制、表达、重组、交换结构生物学:生物大分子的结构与功能、生物大分子之间的互作 生物技术理论与应用第二章一名词解释:1、基因: 基因是合成一种功能蛋白或RNA分子所必需的全部DNA序列,即DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。2、端粒酶: 端粒酶是参与真核生物染色体末端的端粒DNA复制的一种核糖核蛋白酶。由RNA和蛋白质组成,其本质是一种逆转录酶。它以自身的RNA作为端粒DNA复制的模版,合成出富含脱氧单磷酸鸟苷Deoxyguanosine Monophosphate(dGMP)的DNA序列后添加到染色体的末端并

7、与端粒蛋白质结合,从而稳定了染色体的结构。3、假基因:与正常基因结构相似,但没有正常功能的DNA序列 4、Alu序列家族:Alu重复序列是哺乳动物基因组中SINE家族的一员,约有50万份拷贝。由于这种DNA序列中有限制性内切核酸酶Alu工的识别序列AGCT,所以称为Alu重复序列。Alu序列两端各有一个正向重复序列,末端有一个poly(A)尾。5、断裂基因: 编码某一RNA的基因中有些序列并不出现在成熟的RNA序列中,成熟RNA的序列在 基因中被其他的序列隔开6、重叠基因: 是指两个或两个以上的基因共有一段DNA序列,或是指一段DNA序列成为两个或两个以上基因的组成部分。7、变性: DNA双螺

8、旋区的氢键断裂,使双螺旋的两条链完全分开变成单链,这一链分离的过程叫做变性。8、复性:变性DNA在适当条件下,两条彼此分开的链又可以重新地合成双螺旋结构的过程(退火)。9、C值矛盾:在真核生物中,每种生物的单倍体基因组的DNA总量总是恒定的,称为C值,形态学的复杂程度与C-值的不一致称为C值矛盾.10、中心法则:指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。这是所有有细胞结构的生物所遵循的法则。11、增色效应:指在DNA变性的过程中,他在260nm的吸收值先是缓慢上升,达到某一温度时及骤然上升.五、

9、简答题1DNA携带哪两类不同的遗传信息?答:从化学角度看,不同的核苷酸仅是含氮碱基的差别。从信息方面看,储存在DNA中的信息是指碱基的顺序,而碱基不参与核苷酸之间的共价连接,因此储存在DNA的信息不会影响分子结构,来自突变或重组的信息改变也不会破坏分子。2在何种情况下有可能预测某一给定的核苷酸链中“G”的百分含量?答:由于在DNA分子中互补碱基的含量相同的,因此只有在双链中G+C的百分比可知时,G%=(G+C)%/23真核基因组的哪些参数影响C0t1/2值?答:C0t1/2值受基因组大小和基因组中重复DNA的类型和总数影响。4哪些条件可促使DNA复性(退火)?答:降低温度、pH和增加盐浓度。5

10、为什么DNA双螺旋中维持特定的沟很重要?答:形成沟状结构是DNA与蛋白质相互作用所必需。7说明三股螺旋DNA形成的条件与结构特点及其可能的功能。答:在1949-1951年间,E Chargaff发现:(1)不同来源的DNA的碱基组成变化极大(2)A和T、C和G的总量几乎是相等的(即Chargaff规则)(3)虽然(A+G)/(C+T)=1,但(A+T)/(G+C)的比值在各种生物之间变化极大8为什么在DNA中通常只发现A-T和C-G碱基配对?答:(1)C-A配对过于庞大而不能存在于双螺旋中;G-T碱基对太小,核苷酸间的空间空隙太大无法形成氢键。(2)A和T通常形成两个氢键,而C和G可形成三个氢

11、键。正常情况下,可形成两个氢键的碱基不与可形成三个氢键的碱基配对。9为什么只有DNA适合作为遗传物质?答:是磷酸二酯键连接的简单核苷酸多聚体,其双链结构保证了依赖于模板合成的准确性,DNA的以遗传密码的形式编码多肽和蛋白质,其编码形式多样而复杂10简述真核生物的染色体结构,它们是如何组装的?有几种组蛋白参与核小体的形成?答:DNA和组蛋白构成核小体 多个核小体形成串珠链 串珠链绕成每圈6个核小体的中空螺旋管的微纤丝 微纤丝与多种非蛋白结合形成的突环,每个突环含若干功能基因 由6个突环形成一个玫瑰花结状结构 组装成每圈30个玫瑰花结的螺旋圈 由10个螺旋圈再组装成一个染色单体2分子H3和2分子H

12、4形成四聚体;H2A和H2B11核酸变性后分子结构和性质发生了哪几种变化?答:变性:DNA双螺旋区的氢键断裂,使双螺旋的两条链完全分开变成单链,这一链分离的过程叫做变性。变化:DNA溶液的黏度大大下降;沉淀速度增加;浮力密度上升;紫外吸收光谱升高;酸碱滴定曲线改变;生物活性丧失。第三章7、先导链: 又称前导链,是在复制叉处从53进行连续合成的一条子链。8、后随链: 又称滞后链,复制方向与复制叉的方向相反,后随链的合成要等前导开始合成从而将其模板链暴露出来后,才得以进行。后随链上先合成了不连续的冈崎片段,然后在DNA聚合酶I的催化下切除RNA引物,同时填补切除RNA后的空隙,再在DNA连接酶的作

13、用下,将冈崎片段连接成一条连续的DNA单链。9、DNA复制的转录激活: DNA复制起始时通过RNApolymerse的转录过程而解开局部的双链。10、夹子装置器: 又称为-复合物,主要功能是帮助亚基夹住DNA,并有增强核心酶活性的作用。11、DNA连接酶: 是将DNA双链上的两个缺口同时连接起来的酶。若双链DNA中一条链有切口, 一端是3-OH, 另一端是5-磷酸基,连接酶可催化这两端形成磷酸二酯键,而使切口连接的酶。12、SSB: 单链结合蛋白,稳定已被解开的DNA单链,阻止复性和保护单链不被核酸酶降解。13、HU: 类组蛋白,和DNA结合蛋白,能促进复制的起始。14、DnaA: 引发体的部

14、分组成,辨认复制起始点。15、DnaB: 引发体的部分组成,与DnaC相互作用,解螺旋作用。16、DnaC: 引发体的部分组成,与DnaB相互作用,使DnaB蛋白组装到复制起始点上。17、回环模型: 滞后链绕酶一圈形成的环形,使得滞后链和前导链朝着同一方向沿复制叉进行。五、问答题1描述Meselson-Stahl实验,说明这一实验加深我们对遗传理解的重要性。 Meselson-Stahl实验证实了DNA的半保留复制。证实了两个假说:(1)复制需要两条DNA的分离(解链/变性)(2)通过以亲本链作为模板,新合成的DNA链存在于两个复制体中。2请列举可以在线性染色体的末端建立线性复制的三种方式。

15、(1)染色体末端的短重复序列使端粒酶引发非精确复制。(2)末端蛋白与模板链的5端共价结合提供核苷酸游离的3端(3)通过滚环复制,DNA双链环化后被切开,产生延伸的3-OH端3为什么一些细菌完成分裂的时间比细菌基因组的复制所需的时间要少?为什么在选择营养条件下,E.coli中可以存在多叉的染色体或多达4个以上的开环染色体拷贝,而正常情况下染色体是单拷贝的?答:单拷贝复制由细胞中复制起点的浓度控制的。在适宜的培养条件下,细胞呈快速生长,稀释起始阻遏物的浓度,使复制连续进行。4在DNA聚合酶III催化新链合成以前发生了什么反应?答:DnaA(与每9个碱基重复结合,然后使13个碱基解链)、DnaB(解

16、旋酶)和DnaC(先于聚合酶III与原核复制起点相互作用。后随链复制需要引发体完成的多重复制起始,引发体由DnaG引发酶与多种蛋白质因子组成。5DNA复制起始过程如何受DNA甲基化状态影响?答:亲本DNA通常发生种属特异的甲基化。在复制之后,两模板-复制体双链DNA是半甲基化的。半甲基化DNA对膜受体比对DnaA有更高的亲和力,半甲基化DNA不能复制,从而防止了成熟前复制。6请指出在oriC或X型起点起始的DNA复制之间存在的重要差异。答:oriC起点起始的DNA复制引发体只含有DnaG。X型起点起始的DNA复制需要额外的蛋白质Pri蛋白的参与。Pri蛋白在引物合成位点装配引发体。7大肠杆菌被

17、T2噬菌体感染,当它的DNA复制开始后提取噬菌体的DNA,发现一些RNA与DNA紧紧结合在一起,为什么?答:该DNA为双链并且正在进行复制。RNA片段是后随链复制的短的RNA引物。8DNA连接酶对于DNA的复制是很重要的,但RNA的合成一般却不需要连接酶。解释这个现象的原因。答:DNA复制时,后随链的合成需要连接酶将一个冈崎片段的5端与另一冈崎片段的3端连接起来。而RNA合成时,是从转录起点开始原53一直合成的,因此不需DNA连接酶。9曾经认为DNA的复制是全保留复制,每个双螺旋分子都作为新的子代双螺旋分子的模板。如果真是这样,在Meselson和Stahl的实验中他们将得到什么结果?答:复制

18、一代后,一半为重链,一半为轻链;复制两代后,1/4为重链,3/4为轻链。10解释在DNA复制过程中,后随链是怎样合成的。答:(1)将大肠杆菌在15N培养基中培养多代,得到的DNA两条链都被标记,形成重链。(2)细胞移到14N培养基中培养,提取DNA;(3)将DNA进行氯化铯密度梯度离心,;(4)经过一定时间后,DNA在离心管聚集成带,每个带的密度均与该点的氯化铯溶液的密度相同;(5)照相决定每条带的位置和所含的DNA量。1)经15N培养基,所有DNA都聚集在一条重密度带;2)经14N培养基一代后,所有的DNA形成一条中间密度带;3)经14N继续培养基一代,DNA一半是中间密度带,另一半是轻密度

19、带;4)最后,他们证明第一代的分子是双链,且为半保留复制。11描述滚环复制过程及其特征。答:仅是特定环状DNA分子的复制方式。(1)复制过程:1)环状双链DNA的+链被内切酶切开;2)以-链为模板,DNA聚合酶以+链的3端作为引物合成新的+链,原来的+链DNA分子的5端与-链分离;3)+链的3端继续延长;4)引发酶以离开的+链为模板合成RNA引物,DNA聚合酶以+链为模板合成新的-链;5)通常滚环复制的产物是一多聚物,其中大量单位基因组头尾相连。(2)复制过程的特征:1)复制是单方向不对称的;2)产物是单链DNA,但可通过互补链的合成转变为双链;3)子代DNA分子可能是共价连接的连环分子;4)

20、连环分子随后被切成与单个基因组相对应的片段。12简述E.Coli DNA复制起始的主要步骤。DNA合成在复制起点(oriC)的起始,Primase(引物酶)合成RNA引物。DNA helicase (DNA 解旋酶)打开DNA双链,SSB结合单链DNA, DNA Gyrase(DNA促旋酶)引入负螺旋,减少正螺旋。在DNA聚合酶III作用下,5-3合成前导链和后随链前体片段(冈崎片段)。在DNA聚合酶I作用下,去除后随链前体片段5端RNA引物,后随链前体片段间的缺口由DNA ligase连接,形成完整的后随链。13比较原核生物和真核生物DNA复制的不同点。共同点:(1)DNA的半保留复制 即在

21、DNA复制过程中.碱基间氢键首先断裂.双螺旋解旋和分开.每条链分别作为模板.按碱基配对原则合成其互补链.从而形成两个新的双链分子.因新形成的DNA分子中.各保留一条亲代的DNA单链.故名半保留复制.也因此保证了遗传信息的稳定性.此假说最先由Waston和Crick提出.后经Meselson.Stahl(1957)设计的氯化铯密度梯度离心实验.以及Taylor(1957).Cairns(1963)的放射自显影实验所证实.现已为大家所公认.成为原核生物和真核生物DNA复制的普遍规律.(2)DNA的半不连续复制 1968年日本学者冈崎等提出了DNA半不连续复制的模型.后又用同位素标记技术.令人信服地

22、解释了两条互补反向平行的DNA单链是如何同时作为模板进行复制的.他认为.在DNA复制过程中.一股模板上DNA的合成是连续的,另一模板上DNA链的合成是不连续的.是首先合成较短的DNA片段(即冈崎片断).然后再由连接酶连成大片段.同时.不连续合成的这条链总是落后于连续合成的那条链.称为滞后链,连续合成的链称为前导链.前导链前进的方向与复制叉前进方向相同,滞后链合成方向与复制叉前进方向相反.因此.DNA聚合酶的反应方向始终保持5-3.(3)DNA复制的起始.延伸和终止 许多实验表明.DNA的半保留复制是从DNA分子的特定位点开始的.即复制原点(用ori或o表示).现已证明.除fd组噬菌体外.许多生

23、物的复制原点都是富含A-T的区段.由于此区段的键能较低.易于形成瞬时单链.便于单链结合蛋白与之结合.不同点:1) 原核生物基因组DNA有1个复制子.真核生物有多个复制子2) 原核生物比真核生物DNA复制速度快3) 原核生物引物由引酶催化合成的.真核生物引物由DNA聚合酶催化合成的4) 原核生物与真核生物DNA聚合酶不同5) 真核生物端粒DNA的合成由端粒酶催化合成的.原核生物不存在这种情况.14保证DNA复制忠实性和蛋白质翻译忠实性的因素分别有哪些?DNA复制的复杂性保证了复制的高度忠实性。 E.coli复制时,每个碱基对错配频率为10-910-10,是高保真系统。 新DNA链合成时需引物,引

24、物后又要切除,再以DNA链取代,DNA聚合酶在合成时还有校对功能,每引入一个核苷酸都要复查一次,未核实则不能继续进行聚合反应。 在复制过程中还有许多辅助蛋白,E.coli就至少有15种。复制叉的复杂结构进一步提高复制准确性。DNA复制还存在正调控和负调控,调控分子可以是蛋白质,也可以是RNA。 保证蛋白质翻译忠实性的因素 氨基酸活化成为氨基酰 -tRNA 的过程由氨基酰 -tRNA 合成酶催化,该酶对底物氨基酸和 tRNA 都有高度特异性,此外还有校正活性即将任何错误的氨基酰 -AMP-E 或氨基酰 -tRNA 的酯键水解,再换上与密码子相对应的氨基酸。这样使氨基酰 -tRNA 分子中 tRN

25、A 的反密码子通过碱基配对识别 mRNA 分子上的密码子,使氨基酸按 mRNA 信息的指导“对号入座”,保证了从核酸到蛋白质的遗传信息传递的准确性。 核糖体对氨基酰 -tRNA 的进位有校正作用。只有正确的氨基酰 -tRNA 能发生反密码子 - 密码子适当配对而进入 A 位。反之,错误的氨基酰 -tRNA 因反密码子 - 密码子配对不能及时发生而从 A 位解离。这是维持蛋白质生物合成的高度保真性的另一重要机制。一名词解释:1、转录: 是指以DNA为模板,在依赖于DNA的RNA聚和酶催化下,以4中NTP(ATP、 CTP、GTP和UTP)为原料,合成RNA的过程。2、转录单位: 从启动子到终止子

26、称为转录单元 (transcription unit) (转录起始点)3、模板链: 又称反义链, 指作为模板进行RNA转录的链 4、编码链: 又称有义链, 指不作模板的DNA单链5、转录泡:在转录时RNA聚合酶(RNAP)与DNA模板结合,会形成一个泡状结构,成为转录泡。6、RNA聚合酶:以一条DNA链或RNA为模板催化由核苷-5-三磷酸合成RNA的酶。是催化以DNA为模板(template)、三磷酸核糖核苷为底物、通过磷酸二酯键而聚合的合成RNA的酶。7、C端结构域(CTD):RNApol的大亚基中有 C 末端结构域。CTD中含一保守氨基酸序列的多个重复TyrSerProThrSerProS

27、erC 端重复七肽。8、启动子: 是指DNA分子上被RNA聚合酶识别并结合形成起始转录复合物的区域,它还包括一些调节蛋白因子的结合位点 9、上游:转录起点上游的序列,是调控区,与转录的方向相反。10、下游:转录起点下游的区域,是编码区,与转录的方向一致。11、转录起点:1位点,RNA聚合酶的转录起始位点,起始NTP多为ATP或GTP。 12、转录泡:RNApol 结合和转录的DNA模板区域,有17bp左右DNA形成解链区。13、三元转录复合物:由RNA聚合酶,DNA模板和一小段转录产物RNA构成的转录泡复合物。14、核心启动子:RNA聚合酶能够直接识别并结合的启动子。15、上游激活序列(UAS

28、):TATA框上游的保守序列称为上游启动子元件或上游激活序列。16、终止子(terminator):在转录的过程中,提供转录终止信号的RNA序列。17、抗终止子:有的蛋白因子能作用于终止序列,减弱或取消终止子的作用,称为抗终止作用,这种蛋白因子就称为抗终止因子。/引起抗终止作用的蛋白质。18、hnRNA:核内不均一RNA,是存在于真核细胞核中的不稳定,大小不均一的一组高分子RNA的总称。、选择性剪接:一个hnRNA(pre-mRNA)转录本,通过外显子的剪、接、重组,产生多个成熟的mRNA的机制。20、组成性剪接:一个基因的转录产物通过剪接只能产生一种成熟的mRNA.它和选择型剪接的区别是后者

29、可以产生多种成熟mRNA。21、GU-AG规则:这是一条与真核生物蛋白质编码基因相关的规则,说的是 RNA 内含子序列 5 端 的起始两个核苷酸总是 5-GU-3 ,并且其 3 端 的最后两个核苷酸总是 5-AG-322、剪接体:在剪接过程中形成的剪接复合物称为剪接体,剪接体的主要组成是蛋白质和小分子的核RNA(snRNA)。复合物的沉降系数约为5060S,它是在剪接过程的各个阶段随着snRNA的加入而形成的。2. 说明RNApol全酶各个亚基的主要功能。(1) 亚基:转录起始时与核心酶结合全酶。使全酶能识别启动子的Sextama Box(35区),并通过与模板链结合。不同的因子与核心酶结合,

30、可识别不同的启动子。(2)亚基:核心酶的组建因子 ,促使RNApol 与DNA模板链结合前端因子使模板DNA双链解链为单链尾端因子使解链的单链DNA重新聚合为双链(3) 亚基:DNA/RNA杂交链结合位点 完成NMP之间的磷酸酯键的连接 编辑功能(排斥与模板链不互补的碱基) 与Rho ()因子竞争RNA 3end 构成全酶后,因子含有两个位点: I site(initiation site. Rifs):该位点专一性地结合ATP或者GTP (需要高浓度的ATP或GTP) E site(elongation site RifR):对NTP非专一性地结合(催化作用和Editing功能) (4) 亚

31、基:参与RNA非模板链的结合,保护作用。 (5) w 亚基:在全酶中存在,功能不清楚。五、问答题1. 简述转录的基本过程?答:全酶与启动子结合的封闭型启动子复合物的形成( R位点被因子发现并结合 ) 开放型启动子复合物的形成: RNApol的一个适合位点到达10序列区域,诱导富含AT的Pribnow 框的“熔解”, 形成1217bp的泡状物,同时酶分子向10序列转移并与之牢固结合 开放型启动子复合物使RNApol聚合酶定向 两种复合物均为二元复合物(全酶和DNA )在开放型的启动子复合物中,RNApol的I位点和E位点的核苷酸前体间形成第一个磷酸二酯键 (亚基);三元复合物形成; +1位多为CAT模式,位于离开保守T 69 个核苷酸处 因子解离 核心酶与DNA的亲和力下降起始过程结束核心酶移动进入延伸过程2.试比较原核和

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1