ImageVerifierCode 换一换
格式:DOCX , 页数:27 ,大小:1.27MB ,
资源ID:30355272      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/30355272.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(三相半波可控整流电路建模与仿真.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

三相半波可控整流电路建模与仿真.docx

1、三相半波可控整流电路建模与仿真三相半波可控整流电路建模与仿真班级:应电091组号:第1组组员:何俊敏 王晓龙 邵建敏 陈大靠 蔡泽军2011年10月20日一.实验目的1)不同负载时,三相可控整流电路的结构、工作原理、波形分析。2) 在仿真软件Matlab中进行单相可控整流电路的建模与仿真,并分析其波形。二.实验内容1.三相半波可控整流电路(电阻性负载)1.1电路结构为了得到零线变压器二次侧接成星形得到零线,为了给三次谐波电流提供通路,减少高次谐波的影响,变压器一次绕组接成三角形,为/Y接法。三个晶闸管分别接入a、b、c三相电源,其阴极连接在一起为共阴极接法 。如图1-1图1-1 .三相半波可控

2、整流电路原理图(电阻性负载)工作原理:1)在t1-t2区间,有UuUv,UuUw,U相电压最高,VT1承受正向电压, 在t1时刻触发VT1导通,导通角=120,输出电压Ud=Uu。其他两个 晶闸管承受反向电压而不能导通。VT1通过的电流It1与变压器二次侧u相 电流波形相同,大小相等,可在负载电阻R两端测试。2)在t2-t3区间,有UvUu,V相电压最高,VT2承受正向电压,在t2时 刻触发VT2导通,Ud=Uv。VT1两端电压Ut1=Uu-Uv=Uuv0,晶闸管VT1 承受反向电压关断。3)在t3-t4区间,有UwUv,W相电压最高,VT3承受正向电压,在t3 时刻触发VT3导通,Ud=Uw

3、。VT2两端电压Ut2=Uv-Uw=Uvw0,晶闸管 VT2承受反向电压关断。在VT3导通期间VT1两端电压Ut1=Uu-Uw=Uuw 0。这样在一个周期内,VT1只导通120,在其余240时间承受反向电 压而处于关断状态。1.2仿真建模及参数设置根据原理图用matalb软件画出正确的三相半波可控整流电路(电阻性负载)仿真电路图如图1-2所示:图1-2.三相半波可控整流电路仿真模型(电阻性负载)脉冲参数:振幅3V,周期0.02,占空比10%,时相延迟分别为(+30)/360*0.02,(+120+30)/360*0.02,(+240+30)/360*0.02。如图1-3所示 图1-3.脉冲参数

4、设置 电源参数:频率50hz,电压100v,其相限角度分别为0、120、-120如图1-4所示。图1-4 电源参数设置 1.3仿真波形测试设置触发脉冲分别为0、30、60、90。与其产生的相应波形分别如图1-5、图1-6、图1-7、图1-8。在波形图中第一列波为流过晶闸管电流波形,第二列波为流过晶闸管电压波形,第三列波为负载电流波形,第四列波为负载电压波形。图1-5 =0三相半波可控整流电路原理图(电阻性负载)波形图图1-6 =30三相半波可控整流电路原理图(电阻性负载)波形图图1-7 =60三相半波可控整流电路原理图(电阻性负载)波形图图1-8 =90三相半波可控整流电路原理图(电阻性负载)

5、波形图1.4小结a =0时的工作原理分析:晶闸管的电压波形,由3段组成:第1段,VT1导通期间,为一管压降,可近似为UT1=0第2段,在VT1关断后,VT2导通期间,UT1=UU-UV=Uuv,为一段线电压。第3段,在VT3导通期间,UT1=Uu-Uw=Uuw ,为另一段线电压。a = 30时的波形负载电流处于连续和断续之间的临界状态,各相仍导电120 。a 30的情况,负载电流断续,晶闸管导通角小于120 。2.三相半波可控整流电路(阻-感性负载)2.1电路结构为了得到零线变压器二次侧接成星形得到零线,为了给三次谐波电流提供通路,减少高次谐波的影响,变压器一次绕组接成三角形,为/Y接法。三个

6、晶闸管分别接入a、b、c三相电源,其阴极连接在一起为共阴极接法 。如图2-1.图2-1.三相半波可控整流电路原理图(阻-感性负载)工作原理:当小于等于30时相邻两项的换流是在原导通相的交流电压过负之前,其工作情况与电阻性负载相同,输出电压Ud波形,Ut波形也相同。由于负载电感的储能作用,输出电流Id是近乎平直的直流波形,晶闸管中分别流过幅度Id,宽度120的矩形波电流,导通角=120当大于30时,假设=60,VT1导通,在U相交流电压过零变负后,由于未达到VT2的触发时刻,VT2未导通,VT1在负载电感产生的感应电动势作用下继续导通,输出电压Ud小于0,直到VT2被触发导通,VT1承受反向电压

7、而关断,输出电压Ud小于Uv,然后重复U相的过程。2.2仿真建模及参数设置根据原理图用matalb软件画出正确的三相半波可控整流电路(阻-感性负载)仿真电路图如图2-2所示:图2-2.三相半波可控整流电路仿真模型(阻-感性负载)脉冲参数:振幅3V,周期0.02,占空比10%,时相延迟分别为(+30)/360*0.02,(+120+30)/360*0.02,(+240+30)/360*0.02。如图2-3所示 图2-3.脉冲参数设置 电源参数:频率50hz,电压100v,其相限角度分别为0、120、-120如图2-4所示。图2-4 电源参数设置2.3仿真波形测试 设置触发脉冲分别为0、30、60

8、、90。与其产生的相应波形分别如图2-5、图2-6、图2-7、图2-8。在波形图中第一列波为流过晶闸管电流波形,第二列波为流过晶闸管电压波形,第三列波为负载电流波形,第四列波为负载电压波形。图2-5 =0三相半波可控整流电路原理图(阻-感性负载)波形图图2-6 =30三相半波可控整流电路原理图(阻-感性负载)波形图图2-7 =60三相半波可控整流电路原理图(阻-感性负载)波形图图2-8 =90三相半波可控整流电路原理图(阻-感性负载)波形图2.4小结a 30时,整流电压波形与电阻负载时相同。a 30时,u2过零时,VT1不关断,直到VT2 的脉冲到来才换流,由VT2导 通向负载供电,同时向VT

9、1施加反压使其关断,因此ud波形中会出现负的 部分。id波形有一定的脉动,但为简化分析及定量计算,可将id近似为一条 水平线。阻感负载时的移相范围为90。3.三相半波共阳极可控整流电路3.1电路结构 三相半波可控整流电路还可以把晶闸管的三个阳极接在一起,而三个阴极分别接到三相交流电源,形成共阳极的三相半波可控整流电路,其带电感性负载的电路如图3-1所示。由于三个阳极是接在一起的,即是等电位的,所以对于螺栓式的晶闸管来说,可以将晶闸管的阳极固定在同一块大散热器上,散热效果好安装方便。但是,此电路的触发电路不能再像共阴极电路的触发电路那样,引出公共的一条接阴极的线,而且输出脉冲变压器二次侧绕组也不

10、能有公共线,这就给调试和使用带来了不便。 图3-1. 三相半波共阳极可控整流电路工作原理: 共阳极的三相半波可控整流电路的工作原理与共阴极的一致,也是要晶闸管承受正向电压即其阳极电位高于阴极电位时,才可能导通。所以,共阳极的三只晶闸管VT2、VT4和VT6哪一只导通,要看哪一只的阴极电位低,触发脉冲应在三相交流电源相应相电压的负半周加上,而且三个管子的自然换相点在电源两相邻相电压负半周的交点,即图3-1中的2、4、6点,故2、4、6的位置分别是与w相、u相、v相相连的晶闸管VT2、VT4和VT6的角的起始点。从图3-1中可以看出,当时,输出全部在电源负半周。例如,在时刻触发晶闸管VT2,因其阴

11、极电位最低,满足其导通的条件,故可以被触发导通,此时在负载上得到的输出电压为。至时,给VT4加触发脉冲,由于此时u相电压更负,故VT2会让位给VT4,而VT4的导通会立即使VT2承受反向的线电压而关断。同理,在时刻又会换相给v相的晶闸管VT6。由图3-1可见,共阳极接法时的整流输出电压波形形状与共阴极时一样的,只是输出电压的极性相反。3.2仿真建模及参数设置三相半波共阳极可控整流电路仿真电路图如图3-2所示:图3-2三相半波共阳极可控整流电路脉冲参数:振幅3V,周期0.02,占空比10%,时相延迟分别为(+120)/360*0.02,(+240)/360*0.02,()/360*0.02。如图

12、3-3所示图3-3 脉冲参数电源参数:频率50hz,电压100v,其相限角度分别为0、120、-120如图3-4所示。图3-4 电源参数设置 3.3仿真波形测试设置触发脉冲分别为30、60、90、120。与其产生的相应波形分别如图3-5、图3-6、图3-7、图3-8。图3-5 =30三相半波共阳极可控整流电路波形图图3-6 =60三相半波共阳极可控整流电路波形图图3-7 =90三相半波共阳极可控整流电路波形图图3-8 =120三相半波共阳极可控整流电路波形图3.4小结 共阳极电路的特点是只在相电压为负时触发导通,自然换相点为三相负半波的交点。4.三相桥式全控整流电路(电阻性负载)4.1电路结构

13、三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。如图4-1所示:图4-1三相桥式全控整流电路(电阻性负载)4.2仿真建模及参数设置三相桥式全控整流电路(电阻性负载)仿真电路图如图4-2所示:图4-2 三相桥式全控整流电路(电阻性负载)仿真图电源参数:电源220V.相位分别为0,120,-120,频率50HZ,如图4-3所示图4-3 电源参数:4.3仿真波形测试设置控制脚a 为0,30,60,90与其相印的波形,观察其波形,如图4-4,图4-5,图4-6,图4-7所示。图4-4 三相

14、桥式全控整流电路(电阻性负载)a 为0图4-5 三相桥式全控整流电路(电阻性负载)a 为30图4-6 三相桥式全控整流电路(电阻性负载)a 为60图4-7 三相桥式全控整流电路(电阻性负载)a 为904.4小结两个晶闸管同时导通形成供电回路,其中共阴极组和共阳极组各1个,且不能为同一相器件。同一相的上下两个桥臂,即VT1与VT4,VT3与VT6, VT5与VT2,脉冲相差180。5.三相桥式全控整流电路(阻感性负载)5.1电路结构三相桥式全控整流电路是由三相半波可控整流电路演变而来的,它由三相半波共阴极接法(VT1,VT3,VT5)和三相半波共阳极接法(VT1,VT6,VT2)的串联组合。如图

15、5-1所示图5-1 三相桥式全控整流电路(阻感性负载)5.2仿真建模及参数设置三相桥式全控整流电路(阻感性负载)仿真电路图如图5-2所示:图5-2 三相桥式全控整流电路(阻感性负载)仿真图电源参数:电源220V.相位分别为0,120,-120,频率50HZ,如图5-3所示图5-3 电源参数5.3仿真波形测试设置控制脚a 为0,30,60,90与其相印的波形,观察其波形,如图5-4,图5-5,图5-6,图5-7所示。图5-4 三相桥式全控整流电路(阻感性负载)a 为0图5-5 三相桥式全控整流电路(阻感性负载)a 为30图5-6 三相桥式全控整流电路(阻感性负载)a 为60图5-7 三相桥式全控

16、整流电路(阻感性负载)a 为905.4小结当a 60时阻感负载时,由于电感的作用,使得负载电流波形变得平直,当电感足够大的时候,负载电流Id的波形可近似为一条水平线。a 60时,带阻感负载时,三相桥式全控整流电路的a角移相范围为90 三.实验总结我们第二个阶段的实验结束了。对于我们组的成绩,总是有很多需要学习的地方,班里有很多优秀的同学,他们都是我的学习榜样,从他们身上散发的那种坚忍不拔的精神总是让我在松懈时能够继续努力前进。对于自己一些没学到或者不太了解的知识点,我总会虚心地请教老师,他总是能够耐心地给我以正确的回答,学习也正是像这样一个不断汲取的过程,而被汲取的对象却总是默默无闻地毫无保留地奉献着自己的知识,这一点弥足珍贵,从老师身上学到的不仅仅是知识,还有那种精神,能够让你永远立于不败之地的精神。在这学习的期间,也许时间并不长,但以后的道路也会从这里开始有了起点,此时的努力学习也是为我们羽翼未丰的翅膀注入更大的力量,阶段性的成功只是给了我坚定学习的信心,今后的学习生活中我会更加努力,不辜负父母和老师对我的期望,也希望我们整个班级的成绩能够在大家的努力下更上一层楼!

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1