1、六年级数学数和数的运算知识点总结范文整理六年级数学数和数的运算知识点总结数和数的运算一概念整数整数的意义自然数和 0 都是整数。自然数我们在数物体的时候,用来表示物体个数的 1,2, 3叫做自然数。一个物体也没有,用 0 表示。 0 也是自然数。计数单位 一、十、百、千、万、十万、百万、千万、亿都是计 数单位。每相邻两个计数单位之间的进率都是 10。这样的计数法叫 做十进制计数法。数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做 数位。数的整除整数 a 除以整数 b,再把小数化成百分数。百分数化成小数:先把百分数改写成分数,能约分的要 约成最简分数。数的整除把一个合数分解质因数,通常用
2、短除法。先用能整除这个 合数的质数去除,一直除到商是质数为止,再把除数和商写 成连乘的形式。求几个数的最大公约数的方法是:先用这几个数的公约数 连续去除,一直除到所得的商只有公约数 1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。求几个数的最小公倍数的方法是:先用这几个数的公约数 去除,一直除到互质为止, 然后把所有的除数和商连乘求积, 这个积就是这几个数的最小公倍数。成为互质关系的两个数: 1 和任何自然数互质;相邻的两 个自然数互质;当合数不是质数的倍数时,这个合数和这个 质数互质;两个合数的公约数只有 1 时,这两个合数互质。约分和通分约分的方法:用分子和分母的公约
3、数去除分子、分母;通 常要除到得出最简分数为止。通分的方法:先求出原来的几个分数分母的最小公倍数, 然后把各分数化成用这个最小公倍数作分母的分数。三性质和规律商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同 时缩小相同的倍,商不变。小数的性质 小数的性质:在小数的末尾添上零或者去掉零小数的大小 不变。小数点位置的移动引起小数大小的变化小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大 100 倍;小数点向右移动三位, 原来的数就扩大 1000 倍小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小 100 倍;小数点向左移
4、动三位, 原来的数就缩小 1000 倍小数点向左移或者向右移位数不够时,要用“尰补足位。 分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同 的数,分数的大小不变。分数与除法的关系 被除数除数 =被除数 / 除数 因为零不能作除数,所以分数的分母不能为零。 被除数相当于分子,除数相当于分母。四运算的意义整数四则运算整数加法:把两个数合并成一个数的运算叫做加法。在加法里,相加的数叫做加数,加得的数叫做和。加数是 部分数,和是总数。加数 +加数 =和一个加数 =和另一个加数整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运 算叫做减法。在减法里,已知的和叫做被减数,已知的加
5、数叫做减数, 未知的加数叫做差。 被减数是总数, 减数和差分别是部分数。加法和减法互为逆运算。整数乘法:求几个相同加数的和的简便运算叫做乘法。在乘法里,相同的加数和相同加数的个数都叫做因数。相 同加数的和叫做积。在乘法里, 0 和任何数相乘都得 0.1 和任何数相乘都的任 何数。一个因数一个因数 =积一个因数 =积另一个因数 整数除法: 已知两个因数的积与其中一个因数,求另一个因数的运算 叫做除法。在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。乘法和除法互为逆运算。在除法里, 0 不能做除数。因为 0 和任何数相乘都得 0,所以任何一个数除以 0,均得不到一个确定的商
6、。被除数除数 =商除数 =被除数商被除数 =商除数小数四则运算小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并 成一个数的运算。小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的 和与其中的一个加数,求另一个加数的运算 .小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相 同加数和的简便运算;一个数乘纯小数的意义是求这个数的 十分之几、百分之几、千分之几是多少。小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因 数的积与其中一个因数,求另一个因数的运算。乘方 :求几个相同因数的积的运算叫做乘方。例如 33=32分数四则运算分数加法:分数加法的意义与整数
7、加法的意义相同。是把两个数合并 成一个数的运算。分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的 和与其中的一个加数,求另一个加数的运算。分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同 加数和的简便运算。乘积是 1 的两个数叫做互为倒数。分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因 数的积与其中一个因数,求另一个因数的运算。运算定律加法交换律:两个数相加, 交换加数的位置, 它们的和不变, 即 a+b=b+a。加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者 先把后两个数相加,再和个数相加它们的和不变,即运算法 则整数加法计算法则:相同数
8、位对齐,从低位加起,哪一位上的数相加满十,就 向前一位进一。整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从 它的前一位退一作十,和本位上的数合并在一起,再减。整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数 位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对 齐哪一位,然后把各次乘得的数加起来。整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前 几位;如果不够除,就多看一位,除到被除数的哪一位,商 就写在哪一位的上面。如果哪一位上不够商 1,要补“ 0”占位。每次除得的余数要小于除数。小数乘法法则:先按照整数乘法的计算法则算出积,再看
9、因数中共有几位 小数,就从积的右边起数出几位,点上小数点;如果位数不 够,就用“ 0”补足。除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“ 0”,再继续除除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位,然后按照除数是整数的除法法则进行计算。 同分母分数加减法计算方法 : 同分母分数相加减,只把分子相加减,分母不变。 异分母分数加减法计算方法 : 先通分,然后按照同分母分数加减法的的法则进行计算。0. 带分数加减法的计算方法 :整数部分和分数部分分别相加减,再把所得的
10、数合并起来1. 分数乘法的计算法则 :分数乘整数,用分数的分子和整数相乘的积作分子,分母 不变;分数乘分数,用分子相乘的积作分子,分母相乘的积 作分母。分数除法的计算法则 : 甲数除以乙数,等于甲数乘乙数的倒数。运算顺序 小数四则运算的运算顺序和整数四则运算顺序相同。 分数四则运算的运算顺序和整数四则运算顺序相同。 没有括号的混合运算 :同级运算从左往右依次运算;两级运算先算乘、除法, 后算加减法。有括号的混合运算 :先算小括号里面的,再算中括号里面的,最后算括号外面 的。级运算:加法和减法叫做级运算。第二级运算: 乘法和除法叫做第二级运算。五应用整数和小数的应用简单应用题简单应用题:只含有一
11、种基本数量关系,或用一步运算解 答的应用题,通常叫做简单应用题。解题步骤:a 审题理解题意:了解应用题的内容,知道应用题的条件 和问题。读题时,不丢字不添字边读边思考,弄明白题中每 句话的意思。也可以复述条件和问题,帮助理解题意。b 选择算法和列式计算:这是解答应用题的中心工作。从 题目中告诉什么,要求什么着手,逐步根据所给的条件和问 题,联系四则运算的含义,分析数量关系,确定算法,进行 解答并标明正确的单位名称。c 检验:就是根据应用题的条件和问题进行检查看所列 算式和计算过程是否正确,是否符合题意。如果发现错误,马上改正。复合应用题 有两个或两个以上的基本数量关系组成的,用两步或两步 以上
12、运算解答的应用题,通常叫做复合应用题。含有三个已知条件的两步计算的应用题。求比两个数的和多几个数的应用题。比较两数差与倍数关系的应用题。含有两个已知条件的两步计算的应用题。已知两数相差多少与其中一个数,求两个数的和。已知两数之和与其中一个数,求两个数相差多少。解答连乘连除应用题。解答三步计算的应用题。解答小数计算的应用题:小数计算的加法、减法、乘法和 除法的应用题,他们的数量关系、结构、和解题方式都与正 式应用题基本相同,只是在已知数或未知数中间含有小数。d 答案:根据计算的结果,先口答,逐步过渡到笔答。解答加法应用题:a 求总数的应用题:已知甲数是多少,乙数是多少,求甲 乙两数的和是多少。求
13、比一个数多几的数应用题:已知甲数是多少和乙数 b 比甲数多多少,求乙数是多少。解答减法应用题:a 求剩余的应用题:从已知数中去掉一部分,求剩下的部 分。-b 求两个数相差的多少的应用题: 已知甲乙两数各是多少, 求甲数比乙数多多少,或乙数比甲数少多少。c 求比一个数少几的数的应用题: 已知甲数是多少, ,乙数 比甲数少多少,求乙数是多少。解答乘法应用题:a 求相同加数和的应用题:已知相同的加数和相同加数的 个数,求总数。b 求一个数的几倍是多少的应用题:已知一个数是多少, 另一个数是它的几倍,求另一个数是多少。解答除法应用题:a 把一个数平均分成几份,求每一份是多少的应用题:已 知一个数和把这
14、个数平均分成几份的,求每一份是多少。b 求一个数里包含几个另一个数的应用题:已知一个数和 每份是多少,求可以分成几份。c 求一个数是另一个数的的几倍的应用题:已知甲数乙数 各是多少,求较大数是较小数的几倍。d 已知一个数的几倍是多少,求这个数的应用题。常见的数量关系:总价 =单价数量路程 =速度时间工作总量 =工作时间工效总产量 =单产量数量典型应用题具有独特的结构特征的和特定的解题规律的复合应用题, 通常叫做典型应用题。平均数问题:平均数是等分除法的发展。解题关键:在于确定总数量和与之相对应的总份数。算术平均数:已知几个不相等的同类量和与之相对应的份 数,求平均每份是多少。数量关系式:数量之
15、和数量的个 数=算术平均数。加权平均数:已知两个以上若干份的平均数,求总平均数 是多少。数量关系式的总和 =加权平均数。差额平均数:是把各个大于或小于标准数的部分之和被总 份数均分,求的是标准数与各数相差之和的平均数。数量关系式: 2=小数应得数最大数与各数之差的和总 份数 =最大数应给数最大数与个数之差的和总份数 =最小数应得数。例:一辆汽车以每小时 100 千米的速度从甲地开往乙地, 千米的速度从乙地开往甲地。 求这辆车的平 60 又以每小时均速度。分析:求汽车的平均速度同样可以利用公式。此题可以把 甲地到乙地的路程设为“ 1”,则汽车行驶的总路程为“ 2”, 从甲地到乙地的速度为 100
16、,所用的时间为,汽车从乙地到 甲地速度为 60 千米,所用的时间是,汽车共行的时间为 +=, 汽车的平均速度为 2 =75归一问题:已知相互关联的两个量,其中一种量改变,另 一种量也随之而改变,其变化的规律是相同的,这种问题称 之为归一问题。根据求“单一量”的步骤的多少,归一问题可以分为一次 归一问题,两次归一问题。根据球痴单一量之后,解题采用乘法还是除法,归一问题 可以分为正归一问题,反归一问题。一次归一问题,用一步运算就能求出“单一量”的归一问 题。又称“单归一。 ”两次归一问题,用两步运算就能求出“单一量”的归一问 题。又称“双归一。 ”正归一问题:用等分除法求出“单一量”之后,再用乘法
17、 计算结果的归一问题。反归一问题:用等分除法求出“单一量”之后,再用除法 计算结果的归一问题。解题关键:从已知的一组对应量中用等分除法求出一份的数量,然后以它为标准,根据题目的要求算出结果。数量关系式:单一量份数 =总数量总数量单一量 =份数 例一个织布工人,在七月份织布 4774 米,照这样计算, 织布 6930 米,需要多少天?分析:必须先求出平均每天织布多少米, 就是单一量。 6930 =45归总问题:是已知单位数量和计量单位数量的个数,以及 不同的单位数量,通过求总数量求得单位数量的个数。特点:两种相关联的量,其中一种量变化,另一种量也跟 着变化,不过变化的规律相反,和反比例算法彼此相
18、通。数量关系式:单位数量单位个数另一个单位数量 =另一个单位数量单位数量单位个数另一个单位数量 =另一个单位数量。例修一条水渠,原计划每天修 800 米, 6 天修完。实际 4 天修完,每天修了多少米?分析:因为要求出每天修的长度,就必须先求出水渠的长 度。所以也把这类应用题叫做 “归总问题” 。不同之处是 “归 一”先求出单一量,再求总量,归总问题是先求出总量,再 求单一量。 8006 4=1200和差问题: 已知大小两个数的和, 以及他们的差, 求这 两 个数各是多少的应用题叫做和差问题。 解题关键:是把大小两个数的和转化成两个大数的和,然 后再求另一个数。解题规律: 2=大数大数差 =小
19、数 2=小数和小数 =大数例某加工厂甲班和乙班共有工人 94 人,因工作需要临时 从乙班调 46 人到甲班工作,这时乙班比甲班人数少 12 人, 求原来甲班和乙班各有多少人?分析:从乙班调 46 人到甲班,对于总数没有变化,现在 把乙数转化成 2 个乙班, 即 9412,由此得到现在的乙班是 2=41,乙班在调出 46 人之前应该为 41+46=87,甲班为 94 87=7和倍问题:已知两个数的和及它们之间的倍数关系,求两 个数各是多少的应用题,叫做和倍问题。解题关键: 找准标准数一般说来, 题中说是“谁”的几倍, 把谁就确定为标准数。求出倍数和之后,再求出标准的数量 是多少。根据另一个数与标
20、准数的倍数关系,再去求另一个 数的数量。解题规律:和倍数和 =标准数标准数倍数 =另一个数例 : 汽车运输场有大小货车 115 辆,大货车比小货车的 5 倍多 7 辆,运输场有大货车和小汽车各有多少辆?分析:大货车比小货车的 5 倍还多 7 辆,这 7 辆也在总数115 辆内,为了使总数与倍对应,总车辆数应辆。列式为 =18,18 5+7=97 差倍问题:已知两个数的差,及两个数的倍数关系,求两 个数各是多少的应用题。解题规律:两个数的差 =标准数标准数倍数 =另一个数例甲乙两根绳子,甲绳长 63 米,乙绳长 29 米,两根绳剪 去同样的长度,结果甲所剩的长度是乙绳长的 3 倍,甲乙两 绳所剩
21、长度各多少米?各减去多少米?分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩 的长度是乙绳的 3 倍,实比乙绳多倍,以乙绳的长度为标准 数。列式 =17乙绳剩下的长度, 17 3=51甲绳剩下的长度, 29-17=12 剪去的长度。行程问题:关于走路、行车等问题,一般都是计算路程、 时间、速度,叫做行程问题。解答这类问题首先要搞清楚速 度、时间、路程、方向、杜速度和、速度差等概念,了解他 们之间的关系,再根据这类问题的规律解答。解题关键及规律:同时同地相背而行:路程=速度和时间。同时相向而行:相遇时间=速度和时间同时同向而行:追及时间=路程速度差。同时同地同向而行:路程=速度差时间。千米,两
22、人同时同向而行,甲每小 28 例甲在乙的后面 时行 16 千米,乙每小时行 9 千米,甲几小时追上乙? 分析:甲每小时比乙多行千米,也就是甲每小时可以追近 乙千米,这是速度差。已知甲在乙的后面 28 千米, 28 千米里包含着几个千米, 也就是追击所需要的时间。列式 28 =4流水问题:一般是研究船在“流水”中航行的问题。它是 行程问题中比较特殊的一种类型,它也是一种和差问题。它 的特点主要是考虑水速在逆行和顺行中的不同作用。船速:船在静水中航行的速度。 水速:水流动的速度。顺水速度:船顺流航行的速度。 逆水速度:船逆流航行的速度。顺速 =船速水速逆速 =船速水速 解题关键:因为顺流速度是船速
23、与水速的和,逆流速度是 船速与水速的差,所以流水问题当作和差问题解答。解题时 要以水流为线索。解题规律:船行速度 = 2流水速度 = 2路程 =顺流速度顺流航行所需时间路程 =逆流速度逆流航行所需时间例一只轮船从甲地开往乙地顺水而行,每小时行 28 千 米,到乙地后,又逆水航行,回到甲地。逆水比顺水多行 2 小时,已知水速每小时 4 千米。求甲乙两地相距多少千米?分析:此题必须先知道顺水的速度和顺水所需要的时间, 或者逆水速度和逆水的时间。已知顺水速度和水流速度,因 此不难算出逆水的速度,但顺水所用的时间,逆水所用的时 间不知道,只知道顺水比逆水少用 2 小时,抓住这一点,就 可以就能算出顺水
24、从甲地到乙地的所用的时间,这样就能算 出甲乙两地的路程。列式为 2842=2020 2=4040 =528 5=140。还原问题:已知某未知数,经过一定的四则运算后所得的 结果,求这个未知数的应用题,我们叫做还原问题。解题关键:要弄清每一步变化与未知数的关系。解题规律:从最后结果出发,采用与原题中相反的运算方 法,逐步推导出原数。根据原题的运算顺序列出数量关系,然后采用逆运算的方 法计算推导出原数。解答还原问题时注意观察运算的顺序。若需要先算加减法, 后算乘除法时别忘记写括号。例某小学三年级四个班共有学生 168 人,如果四班调 3 人 到三班,三班调 6 人到二班,二班调 6 人到一班,一班
25、调 2 人到四班,则四个班的人数相等,四个班原有学生多少人? 以四班为例, , 4168 应为当四个班人数相等时,分析:一。列式为 50 =75盈亏问题:是在等分除法的基础上发展起来的。他的特点 是把一定数量的物品,平均分配给一定数量的人,在两次分 配中,一次有余,一次不足,或两次都不足) ,已知所余和 不足的数量,求物品适量和参加分配人数的问题,叫做盈亏 问题。解题关键:盈亏问题的解法要点是先求两次分配中分配者 没份所得物品数量的差,再求两次分配中各次共分物品的差, 用前一个差去除后一个差,就得到分配者的数,进而再求得 物品数。解题规律:总差额每人差额 =人数总差额的求法可以分为以下四种情况
26、: 次多余,第二次不足,总差额 =多余 +不足 次正好,第二次多余或不足,总差额 =多余或不足 次多余,第二次也多余,总差额 =大多余 - 小多余 次不足,第二次也不足,总差额 =大不足 - 小不足 例参加美术小组的同学,每个人分的相同的支数的色笔, 如果小组 10 人,则多 25 支,如果小组有 12 人,色笔多余 5 支。求每人分得几支?共有多少支色铅笔?分析:每个同学分到的色笔相等。 这个活动小组有 12 人, 比 10 人多 2 人,而色笔多出了 =20 支,2 个人多出 20 。 12+5=125 =1010 支。列式为 10 支,一个人分得年龄问题:将差为一定值的两个数作为题中的一
27、个条件, 这种应用题被称为“年龄问题” 。解题关键:年龄问题与和差、和倍、差倍问题类似,主要 特点是随着时间的变化,年岁不断增长,但大小两个不同年 龄的差是不会改变的,因此,年龄问题是一种“差不变”的 问题,解题时,要善于利用差不变的特点。例父亲 48 岁,儿子 21 岁。问几年前父亲的年龄是儿子的4 倍?分析:父子的年龄差为 48-21=27 。由于几年前父亲年龄是 儿子的 4 倍,可知父子年龄的倍数差是倍。这样可以算出几 年前父子的年龄,从而可以求出几年前父亲的年龄是儿子的 4 倍。列式为: 21 =12鸡兔问题:已知“鸡兔”的总头数和总腿数。求“鸡”和 “兔”各多少只的一类应用题。通常称
28、为“鸡兔问题”又称 鸡兔同笼问题解题关键:解答鸡兔问题一般采用假设法,假设全是一种 动物一只鸡兔腿数的差 =兔子只数兔子只数 = 2如果假设全是兔子,可以有下面的式子:鸡的只数 = 2兔的头数 =总头数 - 鸡的只数例鸡兔同笼共 50 个头, 170 条腿。问鸡兔各有多少只?兔子只数 2=35 鸡的只数 50-35=15分数和百分数的应用分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量 关系和解题方法基本相同,所不同的只是在已知数或未知数 中含有分数。分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。特征:已知单位“ 1”的量和分率,求与分率所对应的实 际数量。
29、解题关键:准确判断单位“ 1”的量。找准要求问题所对 应的分率,然后根据一个数乘分数的意义正确列式。分数除法应用题: 求一个数是另一个数的几分之几是多少。特征:已知一个数和另一个数,求一个数是另一个数的几 分之几或百分之几。 “一个数”是比较量, “另一个数”是标 准量。求分率或百分率,也就是求他们的倍数关系。解题关键:从问题入手,搞清把谁看作标准的数也就是把 谁看作了“单位一” ,谁和单位一的量作比较,谁就作被 除 数。甲是乙的几分之几 : 甲是比较量,乙是标准量,用甲除以 乙。甲比乙多几分之几:甲减乙比乙多或。关系式 / 乙数或 / 甲数。已知一个数的几分之几的比率叫做税率。* 利息存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。 利息与本金的比值叫做利率。利息 =本金利率时间
copyright@ 2008-2022 冰豆网网站版权所有
经营许可证编号:鄂ICP备2022015515号-1