ImageVerifierCode 换一换
格式:DOCX , 页数:35 ,大小:414.71KB ,
资源ID:29320202      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/29320202.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(高考数学真题导数专题.docx)为本站会员(b****8)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

高考数学真题导数专题.docx

1、高考数学真题导数专题2017年高考真题导数专题一解答题(共12小题)1已知函数f(x)=ae2x+(a2)exx(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围2已知函数f(x)=ax2axxlnx,且f(x)0(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e2f(x0)223已知函数f(x)=x1alnx(1)若f(x)0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)(1+)m,求m的最小值4已知函数f(x)=x3+ax2+bx+1(a0,bR)有极值,且导函数f(x)的极值点是f(x)的零点(极值点是指函数取极值时对应的自变量的值)(1

2、)求b关于a的函数关系式,并写出定义域;(2)证明:b23a;(3)若f(x),f(x)这两个函数的所有极值之和不小于,求a的取值范围5设函数f(x)=(1x2)ex(1)讨论f(x)的单调性;(2)当x0时,f(x)ax+1,求a的取值范围6已知函数f(x)=(x)ex(x)(1)求f(x)的导函数;(2)求f(x)在区间,+)上的取值范围7已知函数f(x)=x2+2cosx,g(x)=ex(cosxsinx+2x2),其中e2.17828是自然对数的底数()求曲线y=f(x)在点(,f()处的切线方程;()令h(x)=g(x)af(x)(aR),讨论h(x)的单调性并判断有无极第1页(共1

3、8页)值,有极值时求出极值8已知函数f(x)=excosxx(1)求曲线y=f(x)在点(0,f(0)处的切线方程;(2)求函数f(x)在区间0, 上的最大值和最小值9设aZ,已知定义在R上的函数f(x)=2x4+3x33x26x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数()求g(x)的单调区间;()设m1,x0)(x0,2,函数h(x)=g(x)(mx0)f(m),求证:h(m)h(x0)0;()求证:存在大于0的常数A,使得对于任意的正整数p,q,且1,x0)(x0,2,满足|x0| 10已知函数f(x)=x3ax2,aR,(1)当a=2时,求曲线y=f(x)在点(3

4、,f(3)处的切线方程;(2)设函数g(x)=f(x)+(xa)cosxsinx,讨论g(x)的单调性并判断有无极值,有极值时求出极值11设a,bR,|a|1已知函数f(x)=x36x23a(a4)x+b,g(x)=exf(x)()求f(x)的单调区间;()已知函数y=g(x)和y=ex的图象在公共点(x0,y0)处有相同的切线,(i)求证:f(x)在x=x0处的导数等于0;(ii)若关于x的不等式g(x)ex在区间x01,x0+1上恒成立,求b的取值范围12已知函数f(x)=ex(exa)a2x(1)讨论f(x)的单调性;(2)若f(x)0,求a的取值范围第2页(共18页)2017年高考真题

5、导数专题参考答案与试题解析一解答题(共12小题)1(2017新课标)已知函数f(x)=ae2x+(a2)exx(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围【解答】解:(1)由f(x)=ae2x+(a2)exx,求导f(x)=2ae2x+(a2)ex1,当a=0时,f(x)=2ex10,当xR,f(x)单调递减,当a0时,f(x)=(2ex+1)(aex1)=2a(ex+)(ex),令f(x)=0,解得:x=ln,当f(x)0,解得:xln,当f(x)0,解得:xln,x(,ln)时,f(x)单调递减,x(ln,+)单调递增;当a0时,f(x)=2a(ex+)(ex)0

6、,恒成立,当xR,f(x)单调递减,综上可知:当a0时,f(x)在R单调减函数,当a0时,f(x)在(,ln)是减函数,在(ln,+)是增函数;(2)若a0时,由(1)可知:f(x)最多有一个零点,当a0时,f(x)=ae2x+(a2)exx,当x时,e2x0,ex0,当x时,f(x)+,当x,e2x+,且远远大于ex和x,当x,f(x)+,第3页(共18页)函数有两个零点,f(x)的最小值小于0即可,由f(x)在(,ln)是减函数,在(ln,+)是增函数,f(x)min=f(ln)=a( )+(a2)ln0,1ln0,即ln+10,设t=,则g(t)=lnt+t1,(t0),求导g(t)=+

7、1,由g(1)=0,t=1,解得:0a1,a的取值范围(0,1)方法二:(1)由f(x)=ae2x+(a2)exx,求导f(x)=2ae2x+(a2)ex1,当a=0时,f(x)=2ex10,当xR,f(x)单调递减,当a0时,f(x)=(2ex+1)(aex1)=2a(ex+)(ex),令f(x)=0,解得:x=lna,当f(x)0,解得:xlna,当f(x)0,解得:xlna,x(,lna)时,f(x)单调递减,x(lna,+)单调递增;当a0时,f(x)=2a(ex+)(ex)0,恒成立,当xR,f(x)单调递减,综上可知:当a0时,f(x)在R单调减函数,当a0时,f(x)在(,lna

8、)是减函数,在(lna,+)是增函数;(2)若a0时,由(1)可知:f(x)最多有一个零点,当a0时,由(1)可知:当x=lna时,f(x)取得最小值,f(x)min=f(lna)=1ln,当a=1,时,f(lna)=0,故f(x)只有一个零点,当a(1,+)时,由1ln0,即f(lna)0,故f(x)没有零点,第4页(共18页)当a(0,1)时,1ln0,f(lna)0,由f(2)=ae4+(a2)e2+22e2+20,故f(x)在(,lna)有一个零点,假设存在正整数n0,满足n0ln(1),则f(n0)=(a+a2)n0 n0 n00,由ln(1)lna,因此在(lna,+)有一个零点a

9、的取值范围(0,1)2(2017新课标)已知函数f(x)=ax2axxlnx,且f(x)0(1)求a;(2)证明:f(x)存在唯一的极大值点x0,且e2f(x0)22【解答】(1)解:因为f(x)=ax2axxlnx=x(axalnx)(x0),则f(x)0等价于h(x)=axalnx0,求导可知h(x)=a则当a0时h(x)0,即y=h(x)在(0,+)上单调递减,所以当x01时,h(x0)h(1)=0,矛盾,故a0因为当0x时h(x)0、当x时h(x)0,所以h(x)min=h(),又因为h(1)=aaln1=0,所以=1,解得a=1;(2)证明:由(1)可知f(x)=x2xxlnx,f(

10、x)=2x2lnx,令f(x)=0,可得2x2lnx=0,记t(x)=2x2lnx,则t(x)=2,令t(x)=0,解得:x=,所以t(x)在区间(0,)上单调递减,在(,+)上单调递增,所以t(x)min=t()=ln210,从而t(x)=0有解,即f(x)=0存在两根第5页(共18页)x0,x2,且不妨设f(x)在(0,x0)上为正、在(x0,x2)上为负、在(x2,+)上为正,所以f(x)必存在唯一极大值点x0,且2x02lnx0=0,所以f(x0)= x0x0lnx0= x0+2x02=x0,由x0可知f(x0)(x0)max=+=;由f()0可知x0,所以f(x)在(0,x0)上单调

11、递增,在(x0,)上单调递减,所以f(x0)f()= ;综上所述,f(x)存在唯一的极大值点x0,且e2f(x0)223(2017新课标)已知函数f(x)=x1alnx(1)若f(x)0,求a的值;(2)设m为整数,且对于任意正整数n,(1+)(1+)(1+)m,求m的最小值【解答】解:(1)因为函数f(x)=x1alnx,x0,所以f(x)=1= ,且f(1)=0所以当a0时f(x)0恒成立,此时y=f(x)在(0,+)上单调递增,这与f(x)0矛盾;当a0时令f(x)=0,解得x=a,所以y=f(x)在(0,a)上单调递减,在(a,+)上单调递增,即f(x)min=f(a),又因为f(x)

12、min=f(a)0,所以a=1;(2)由(1)可知当a=1时f(x)=x1lnx0,即lnxx1,所以ln(x+1)x当且仅当x=0时取等号,所以ln(1+ ) ,kN*第6页(共18页)一方面,ln(1+)+ln(1+即(1+)(1+ )(1+)+ln(1+)e;)+=11,另一方面,(1+)(1+ )(1+ )(1+)(1+ )(1+ )= 2;从而当n3时,(1+)(1+ )(1+ )(2,e),因为m为整数,且对于任意正整数n,(1+)(1+)(1+)m成立,所以m的最小值为3(4(2017江苏)已知函数f(x)=x3+ax2+bx+1(a0,bR)有极值,且导函数f(x)的极值点是f

13、(x)的零点极值点是指函数取极值时对应的自变量的值)(1)求b关于a的函数关系式,并写出定义域;(2)证明:b23a;(3)若f(x),f(x)这两个函数的所有极值之和不小于,求a的取值范围【解答】(1)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f(x)=3x2+2ax+b,g(x)=6x+2a,令g(x)=0,解得x=由于当x时g(x)0,g(x)=f(x)单调递增;当x时g(x)0,g(x)=f(x)单调递减;所以f(x)的极小值点为x=,由于导函数f(x)的极值点是原函数f(x)的零点,所以f()=0,即+1=0,所以b= +(a0)因为f(x)=x3+ax2+bx+1(a

14、0,bR)有极值,所以f(x)=3x2+2ax+b=0的实根,所以4a212b0,即a2所以b= +(a3)+0,解得a3,第7页(共18页)(2)证明:由(1)可知h(a)=b23a=27),由于a3,所以h(a)0,即b23a;+=(4a327)(a3(3)解:由(1)可知f(x)的极小值为f()=b,设x1,x2是y=f(x)的两个极值点,则x1+x2=,x1x2=,所以f(x1)+f(x2)= + +a( +)+b(x1+x2)+2=(x1+x2)(x1+x2)23x1x2+a(x1+x2)22x1x2+b(x1+x2)+2= +2,又因为f(x),f(x)这两个函数的所有极值之和不小

15、于,所以b + +2= ,因为a3,所以2a363a540,所以2a(a236)+9(a6)0,所以(a6)(2a2+12a+9)0,由于a3时2a2+12a+90,所以a60,解得a6,所以a的取值范围是(3,65(2017新课标)设函数f(x)=(1x2)ex(1)讨论f(x)的单调性;(2)当x0时,f(x)ax+1,求a的取值范围【解答】解:(1)因为f(x)=(1x2)ex,xR,所以f(x)=(12xx2)ex,令f(x)=0可知x=1,当x1或x1+时f(x)0,当1x1+时f(x)0,所以f(x)在(,1 ),(1+ ,+)上单调递减,在(1 ,第8页(共18页)1+ )上单调

16、递增;(2)由题可知f(x)=(1x)(1+x)ex下面对a的范围进行讨论:当a1时,设函数h(x)=(1x)ex,则h(x)=xex0(x0),因此h(x)在0,+)上单调递减,又因为h(0)=1,所以h(x)1,所以f(x)=(1x)h(x)x+1ax+1;当0a1时,设函数g(x)=exx1,则g(x)=ex10(x0),所以g(x)在0,+)上单调递增,又g(0)=101=0,所以exx+1因为当0x1时f(x)(1x)(1+x)2,所以(1x)(1+x)2ax1=x(1axx2),取x0= (0,1),则(1x0)(1+x0)2ax01=0,所以f(x0)ax0+1,矛盾;当a0时,

17、取x0=(0,1),则f(x0)(1x0)(1+x0)2=1ax0+1,矛盾;综上所述,a的取值范围是1,+)6(2017浙江)已知函数f(x)=(x)ex(x)(1)求f(x)的导函数;(2)求f(x)在区间,+)上的取值范围【解答】解:(1)函数f(x)=(x)ex(x),导数f(x)=(12)ex(x)ex=(1x+)ex=(1x)(1)ex;(2)由f(x)的导数f(x)=(1x)(1可得f(x)=0时,x=1或,第9页(共18页)ex,当x1时,f(x)0,f(x)递减;当1x时,f(x)0,f(x)递增;当x时,f(x)0,f(x)递减,且x x22x1(x1)20,则f(x)0由

18、f()=e ,f(1)=0,f()=e ,即有f(x)的最大值为e ,最小值为f(1)=0则f(x)在区间,+)上的取值范围是0,e 7(2017山东)已知函数f(x)=x2+2cosx,g(x)=ex(cosxsinx+2x2),其中e2.17828是自然对数的底数()求曲线y=f(x)在点(,f()处的切线方程;()令h(x)=g(x)af(x)(aR),讨论h(x)的单调性并判断有无极值,有极值时求出极值【解答】解:(I)f()=22f(x)=2x2sinx,f()=2曲线y=f(x)在点(,f()处的切线方程为:y(22)=2(x)化为:2xy22=0(II)h(x)=g(x)af(x

19、)=ex(cosxsinx+2x2)a(x2+2cosx)h(x)=ex(cosxsinx+2x2)+ex(sinxcosx+2)a(2x2sinx)=2(xsinx)(exa)=2(xsinx)(exelna)令u(x)=xsinx,则u(x)=1cosx0,函数u(x)在R上单调递增u(0)=0,x0时,u(x)0;x0时,u(x)0(1)a0时,exa0,x0时,h(x)0,函数h(x)在(0,+)单调递增;x0时,h(x)0,函数h(x)在(,0)单调递减第10页(共18页)x=0时,函数h(x)取得极小值,h(0)=12a(2)a0时,令h(x)=2(xsinx)(exelna)=0

20、解得x1=lna,x2=00a1时,x(,lna)时,exelna0,h(x)0,函数h(x)单调递增;x(lna,0)时,exelna0,h(x)0,函数h(x)单调递减;x(0,+)时,exelna0,h(x)0,函数h(x)单调递增当x=0时,函数h(x)取得极小值,h(0)=2a1当x=lna时,函数h(x)取得极大值,h(lna)=aln2a2lna+sin(lna)+cos(lna)+2当a=1时,lna=0,xR时,h(x)0,函数h(x)在R上单调递增1a时,lna0,x(,0)时,exelna0,h(x)0,函数h(x)单调递增;x(0,lna)时,exelna0,h(x)0

21、,函数h(x)单调递减;x(lna,+)时,exelna0,h(x)0,函数h(x)单调递增当x=0时,函数h(x)取得极大值,h(0)=2a1当x=lna时,函数h(x)取得极小值,h(lna)=aln2a2lna+sin(lna)+cos(lna)+2综上所述:a0时,函数h(x)在(0,+)单调递增;x0时,函数h(x)在(,0)单调递减x=0时,函数h(x)取得极小值,h(0)=12a0a1时,函数h(x)在x(,lna)是单调递增;函数h(x)在x(lna,0)上单调递减当x=0时,函数h(x)取得极小值,h(0)=2a1当x=lna时,函数h(x)取得极大值,h(lna)=aln2

22、a2lna+sin(lna)+cos(lna)+2当a=1时,lna=0,函数h(x)在R上单调递增0(a1时,函数h(x)在(,),lna,+)上单调递增;函数h(x)在(0,lna)上单调递减当x=0时,函数h(x)取得极大值,h(0)=2a1当x=lna时,函数h(x)取得极小值,h(lna)=aln2a2lna+sin(lna)+cos(lna)+2第11页(共18页)8(2017北京)已知函数f(x)=excosxx(1)求曲线y=f(x)在点(0,f(0)处的切线方程;(2)求函数f(x)在区间0, 上的最大值和最小值【解答】解:(1)函数f(x)=excosxx的导数为f(x)=

23、ex(cosxsinx)1,可得曲线y=f(x)在点(0,f(0)处的切线斜率为k=e0(cos0sin0)1=0,切点为(0,e0cos00),即为(0,1),曲线y=f(x)在点(0,f(0)处的切线方程为y=1;(2)函数f(x)=excosxx的导数为f(x)=ex(cosxsinx)1,令g(x)=ex(cosxsinx)1,则g(x)的导数为g(x)=ex(cosxsinxsinxcosx)=2exsinx,当x0, ,可得g(x)=2exsinx0,即有g(x)在0,则f(x)在0,递减,可得g(x)g(0)=0,递减,即有函数f(x)在区间0,最小值为f( )=e cos上的最

24、大值为f(0)=e0cos00=1;=9(2017天津)设aZ,已知定义在R上的函数f(x)=2x4+3x33x26x+a在区间(1,2)内有一个零点x0,g(x)为f(x)的导函数()求g(x)的单调区间;()设m1,x0)(x0,2,函数h(x)=g(x)(mx0)f(m),求证:h(m)h(x0)0;()求证:存在大于0的常数A,使得对于任意的正整数p,q,且1,x0)(x0,2,满足|x0| (【解答】)解:由f(x)=2x4+3x33x26x+a,可得g(x)=f(x)=8x3+9x26x6,第12页(共18页)进而可得g(x)=24x2+18x6令g(x)=0,解得x=1,或x=当x变化时,g(x),g(x)的变化情况如下表:xg(x)g(x

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1