ImageVerifierCode 换一换
格式:DOCX , 页数:17 ,大小:98.04KB ,
资源ID:29084740      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/29084740.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(电力的生产问题含代码程序.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

电力的生产问题含代码程序.docx

1、电力的生产问题含代码程序电力生产优化问题的数学模型摘要:本文解决的是日常生活中的电力生产问题,由于各种型号发电机的发电能力不同以及每天各时段需电量的不同,且各种型号的发电机使用成本也不一样,合理配置和使用各型号的发电机不仅可以减少资源的浪费,也可以减少发电机每天的使用成本。在可持续发展的社会中,如何节约资源、提高效率是当前社会面临的重要问题之一,为此,我们建立了一个单目标多约束的最优化模型,以每一天的总成本为目标函数,进而求得发电机每天使用成本的最优值。对于问题一:要求得目标函数的最优解,需要将题目中所涉及到的诸如每日需电量、发电机数量、最大(小)输出功率等相应的约束条件列出来,进而利用LIN

2、GO软件对目标函数进行求解得到合理的发电机使用数量及一天的最小使用总成本。对于问题二:在问题一的基础上,增加了正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升的条件。将模型一用户每日需电量的约束条件改一下,即可得到模型二的约束条件,二者的目标函数是一样的,同样利用LINGO软件即可得到模型二的最优解。关键词:单目标多约束 最优解 LINGO软件1. 问题重述在追求可持续发展的今天,节约资源、提高效率是日常生活中必不可少的。发电机作为电力的源泉,向人们提供日常生活中所需电量,如何合理安排分配发电机组的工作,将发电成本降到最低,是我们要着重考虑的问题。本文所考虑的就是合理安排发电

3、机工作的数学建模问题。题目要求:为满足每日电力需求(单位为兆瓦(MW),可以选用四种不同类型的发电机。每日电力需求如下表1。 表1:每日用电需求(兆瓦)时段(0-24)0-66-99-1212-1414-1818-2222-24需求12000320002500036000250003000018000每种发电机都有一个最大发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。所有发电机都存在一个启动成本,以及工作于最小功率状态时的固定的每小时成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。这些数据均列于表2中。表2:发电机情况可用数量最小输出功率(

4、MW)最大输出功率(MW)固定成本(元/小时)每兆瓦边际成本(元/小时)启动成本型号110750175022502.75000型号241000150018002.21600型号381200200037501.82400型号431800350048003.81200只有在每个时段开始时才允许启动或关闭发电机。与启动发电机不同,关闭发电机不需要付出任何代价。本文要解决的问题有:问题一:试确定在每个时段应分别使用各型号发电机的数量,以使每天的总成本最小,并求出最小总成本。问题二:在现实生活中,用电量不可能恒定不变,所以为了更符合实际,增强方案的可行性,要求发电机要保留一定的发电能力,以应对突发情况。

5、所以假设:在任何时刻,正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升。试确定每个时段又应分别使用各型号发电机的数量,以使每天的总成本最小,并求出此时的最小总成本。2.问题分析2.1发电机使用总成本组成分析所有发电机都存在一个启动成本,发电机频繁启动会提升启动成本,所以要在尽可能满足供电需求的基础上减少发电机的启动次数,进而减少启动成本;发电机工作于最小功率状态时的固定的每小时成本称为固定成本,并且如果功率高于最小功率,则超出部分的功率每兆瓦每小时还存在一个成本,即边际成本。由题知,为满足供电量(附录1为一天中不同时间段所需电量),共有四种发电机可选择,每种发电机都有一个最大

6、发电能力,当接入电网时,其输出功率不应低于某一最小输出功率。一般来讲,我们希望发电机的发电能力越大越好,但是有了边际成本这一约束,必须通过计算和编程来合理安排发电机的数量、型号以及发电功率。与启动发电机不同,关闭发电机不需要付出任何代价。总成本构成图2.2问题的分析此题研究的是每天各时段发电机在满足供电量的前提下,运行总成本最小的问题。全天可分为7个时段,均由4种类型型号的发电机组来发电,由于各时段用电量不同,所以每个时段所需要的发电机型号和数量也不尽相同。在考虑发电机时,其总成本费用由固定成本、边际成本和启动成本三部分构成。因此,在选择发电机型号和数量时,必须三方面综合考虑,来寻求最优解。此

7、外,题目对启动成本的特殊定义,我们必须考虑到相邻时段重复启动成本对总成本造成的误差。对于所划定的7个时段,可以通过求取每个时段的局部最优来获得目标的整体最优。针对问题一:我们在满足发电需求量的前提下,对7个时段各阶段的固定成本,边际成本和启动成本,进行叠加求和,得出目标函数,通过约束利用软件求解即可获得结果。针对问题二:题目要求在任何时刻,机组必须留出20%的发电能力余量以防用电量的突然上升。容易看出,它跟问题一极为相似,只是在问题一的基础上增加了一个需求发电量的约束,方法与问题一相同。3数据分析3.1每日用电需求量由题目中给出的表1,列出了一天中各时段的用电需求量,从表1中很容易看出一天中不

8、同的时段电量的需求量不同,12-14时段用电量达到最高值,各时段用电需求量参照下表。表1:每日用电需求(兆瓦)时段(0-24)0-66-99-1212-1414-1818-2222-24需求12000320002500036000250003000018000为了便于书写和说明,将各时段进行标记,我们将每天分为7个时段,具体如下:每日用电需求(兆瓦)时段i1234567需求120003200025000360002500030000180003.2不同型号发电机的基本情况由表2可以确定解决本问题的一些约束条件,如可用数量,最小最大输出功率,以及使用的成本问题。表2:发电机情况可用数量最小输出功

9、率(MW)最大输出功率(MW)固定成本(元/小时)每兆瓦边际成本(元/小时)启动成本型号110750175022502.75000型号241000150018002.21600型号381200200037501.82400型号431800350048003.81200由上表及题目可知,总成本固定成本+边际成本+启动成本,欲获得最低总成本,必须权衡三者之间的关系,确定各时段各型号发电机的使用数量;又从“只有在每个时段开始时才允许启动或关闭发电机,与启动发电机不同,关闭发电机不需要付出任何代价”知启动成本是建模的关键。启动成本在计算总费用时必须考虑相邻时间段同种型号的使用台数。对于连续工作的电机我

10、们只需在第一次启动时计算它们的启动成本,而对于后面时段重复使用的发电机则不计启动成本。例如,第一时间段使用4台型号一的电机,第二时间段使用型号一的电机台数不大于4,则启动费用为0;如果大于4则只需计算超出4的台数的启动成本。编程时我们以(06)为起点,以(2224)为终点算出最小成本。为了探究发电机功率与成本之间的关系,我们根据表2给出的数据,利用MATLAB软件绘制出每小时发电总成本与电机功率的关系图,代码见附录一。 从上图可知,每小时的发电成本随着功率的增加而增加。型号2,3的斜率比较小,说明功率的变化对型号2,3的影响最小,由此可以估计,在满足发电需求量条件的前提下应优先考虑使用型号2与

11、型号3的发电机。4.模型的假设和符号说明4.1模型的假设假设1:题目所给数据是全部合理、正确的。假设2:各时段发电机组的成本完全按清单计算。假设3:所有发电机均能正常工作,且工作过程中不存在发电机的损坏。假设4:各时段开关发电机的时间忽略不计。假设5:发电机一开始就工作在指定功率状态。假设6:外界环境对发电机组没有影响。4.2符号说明符号符号说明第i个时间段型号j发电机的总数量,单位:台第i个时间段型号j发电机的启动数量,单位:台型号j发电机正常工作时最小输出功率,单位:兆瓦型号j发电机正常工作时最大输出功率,单位:兆瓦型号j发电机的固定成本,单位:元/小时型号j发电机的边际成本,单位:元/小

12、时兆瓦型号j发电机的启动成本,单位:元/台第i个时间段型号j发电机的输出功率,单位:兆瓦第i个时间段的总功率,单位:兆瓦i=1,2,7;j=1,2,3,45.模型一的建立与求解5.1 模型一的准备本模型总成本由固定成本、边际成本和启动成本三部分构成,目的是获得每天的总成本最小,由此我们采用单目标多约束非线性规划。单目标多约束非线性规划简介:如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。单目标多约束即为在多种约束条件下满足同一个目标。5.2 模型一的建立5.2.1确定目标函数(1)假设发电机工作之前,均处于关闭状态,定义 (i)启动成本由于下一时间段的启动成本必须考虑

13、上一时间段的启动台数,如果后一时间段同种型号的电机台数小于或等于前一时间段,则后一时间段启动成本为0,反之就需计算超出的台数的启动成本。故在确定目标函数之前,我们还需做如下定义: 得到不同时段启动成本:(ii)固定成本由表二知,固定成本与时间及台数有关,所以可以得到不同时间段的固定成本:(iii)边际成本由题可知,边际成本与时间和台数有关,所以可以得到不同时间段的边际成本:(2)由总费用=启动成本费用+固定成本费用+边际成本费用,可得到最终目标函数:5.2.2 确定约束条件约束一:每种型号的发电机有数量和输出功率限制(1) 型号1的发电机的数量和输出功率限制, (2)型号2的发电机的数量和输出

14、功率限制 , (3)型号3的发电机的数量和输出功率限制 , (4)型号4的发电机的数量和输出功率限制 , 约束二:每段时间供应的发电量要满足电力需求量5.2.3 综上所述我们得到问题一的非线性规划模型s.t5.3 模型一的求解这是一个非线性规划问题,Lingo 软件是一种专门用于求解数学规划问题的优化计算软件包,其程序执行速度快,易于方便地输入、修改、求解和分析一个数学规划(优化问题),因此在本模型的求解中我们采用Lingo 软件进行运算。求解的一天下来的最小成本是1484860元,求解的Lingo 程序代码见附录二,具体发电机组各时段数量分配见下表。时间段型号1234567066991212

15、141418182222241台数0446330功率752.0001650.00750.001750.001200.001533.331748.362台数4444444功率1000.001500.001100.001500.001500.001500.001500.003台数4777575功率2000.002000.002000.002000.002000.002000.002000.004台数0323331功率1802.001800.001800.001833.331800.001800.002000.00 5.4 模型一的结果分析考虑到题目中的约束条件较多,而题目要求求全天的最小费用,所以

16、我们采用首先分段分析在整体求解的方法,来建立模型。这样所求的结果简单易懂并且减小了编程的难度,便于检验分析。缺点是:增大了编程的篇幅。结果中型号2、3的发电机组用量较多,恰好满足功率与成本关系曲线中的假设估计,经过检验后我们的结果严格满足题目中的约束条件,并且都在零点或零点附近取值。综上所述:我们的结果是较为合理和符合要求的.6. 问题二的解答针对问题二,我们建立模型二6.1模型二的建立6.1.1确定目标函数模型二的目标函数与模型一相同:W=其中 6.1.2 确定约束条件约束条件一同模型一约束条件二:正在工作的发电机组必须留出20%的发电能力余量,以防用电量突然上升则每段时间供应的发电量要满足

17、电力需求量6.1.3 综上所述我们得到问题二的非线性规划模型W=6.2 模型二的求解这仍然是一个线性规划模型,因此我们仍利用lingo软件进行编程求解(求解程序见附录3),我们考虑发电余量之后,求的一天下来最小成本为1885490元,具体发电机组安排如下表:6.3 模型二的结果分析基于模型二是以模型一为基础的,只是约束条件不同,因此优缺点和模型一类似。对于二要保留20%的发电能力,同时又要满足需求,所以需要的电机台数比问题一中的多,费用自然比一中的高。问题一的结果为W(1)=1463193,问题二的结果为W(2)=1885420。W(2)乘以0.8等于1508392,该结果略大于W(1)。综上

18、所述,问题二中的结果也是较为符合题意的。 时间段 型号1234567 06 69 912 1214 1418 1822 22241台数1 7 7 8 6 6 1功率1000.01750.0807.01750.0750.01683.0752.02台数 4 4 4 4 4 4 4功率1500.01500.01500.01500.01338.01500.01437.03台数 4 8 8 8 8 8 8功率2000.02000.02000.02000.02000.02000.02000.04台数 0 3 2 3 3 3 0功率 1800.01917.01801.03000.01800.01801.01

19、998.07模型优缺点及推广7.1模型优点: (1)运用适合每段时间的通用算法,分段进行分析,使建模过程一目了然,方便理解。(2)充分利用软件资源,先用matlab生成的图形进行分析,大致了解发电机组最优使用情况,然后用lingo求约束性的非线性方程,编写的程序清楚明了,方便检查,可及时发现错误。7.2模型的缺点:(1)建立的模型中,部分型号的发电机长期循环使用,长时间下去,可能对发电机造成损坏。(2)假设条件过于模型化,真正运行起来可能与所建立的模型有些出入。(3)发电机长期使用时未考虑第七时段到第二天第一时段过度时期的启动成本。7.3模型的推广: 我们建立的方法和思想可以推广到其他类似方面

20、的问题。本文所建立的模型不仅估算出发电厂全天发电机组的最佳安排,而且还能给其他企业安排提供一些理论参考。如公交系统,不同时段人流量不同,不同路线的人流量也不同,故需要的公交数量也就不同了,我们就可以采用本文所建模型。 参考文献 1岂兴明等,MATLAB7.0程序设计快速入门,北京:人民邮电出版社,20092司守奎,数学建模算法与程序,烟台:海军航空工程学院,20073 附录功率与成本关系图matlab代码:x1=750:1:1750;x2=1000:1:1500;x3=1200:1:2000;x4=1800:1:3500;y1=2250+(x1-750)*2.7+5000;y2=1800+(x

21、2-1000)*2.2+1600;y3=3750+(x3-1200)*1.8+2400;y4=4800+(x4-1800)*3.8+1200;plot(x1,y1,r,x2,y2,g,x3,y3,k,x4,y4,b);grid;xlabel(功率x);ylabel(成本y);title(图1功率与成本的关系);legend(y1,y2,y3,y4);text(1300,8200,型号1);text(1250,3600,型号2);text(1500,6400,型号3);text(2500,8000,型号4); 模型一建立lingo代码:sets: shiduan/1.7/:h,t; xingha

22、o/1.4/:N,Pmin,Pmax,G,B,Q; link(shiduan,xinghao):x,w; endsets min=sum(xinghao(j):Q(j)*x(1,j)+G(j)*t(1)*x(1,j)+(w(1,j)-Pmin(j)*x(1,j)*B(j)*t(1)+sum(link(i,j)|i#ge#2:if(x(i,j)#gt#x(i-1,j) ,(x(i,j)-x(i-1,j)*Q(j),0)+x(i,j)*t(i)*G(j)+(w(i,j)-Pmin(j)*t(i)*x(i,j)*B(j); for(link(i,j):x(i,j)=Pmin(j); for(link

23、(i,j):w(i,j)=h(i); for(link:gin(x); data: t=6 3 3 2 4 4 2; h=12000 32000 25000 36000 25000 30000 18000; N=10 4 8 3; Pmin=750 1000 1200 1800; Pmax=1750 1500 2000 3500; G=2250 1800 3750 4800; B=2.7 2.2 1.8 3.8; Q=5000 1600 2400 1200; enddata end模型二建立lingo代码:sets: shiduan/1.7/:h,t; xinghao/1.4/:N,Pmin,

24、Pmax,G,B,Q; link(shiduan,xinghao):x,w; endsets min=sum(xinghao(j):Q(j)*x(1,j)+G(j)*t(1)*x(1,j)+(w(1,j)-Pmin(j)*x(1,j)*B(j)*t(1)+sum(link(i,j)|i#ge#2:if(x(i,j)#gt#x(i-1,j) ,(x(i,j)-x(i-1,j)*Q(j),0)+x(i,j)*t(i)*G(j)+(w(i,j)-Pmin(j)*t(i)*x(i,j)*B(j); for(link(i,j):x(i,j)=Pmin(j); for(link(i,j):w(i,j)=h(i); for(link:gin(x); data: t=6 3 3 2 4 4 2; h=12000 32000 25000 36000 25000 30000 18000; N=10 4 8 3; Pmin=750 1000 1200 1800; Pmax=1750 1500 2000 3500; G=2250 1800 3750 4800; B=2.7 2.2 1.8 3.8; Q=5000 1600 2400 1200; enddata end

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1