ImageVerifierCode 换一换
格式:DOCX , 页数:7 ,大小:24KB ,
资源ID:2889995      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/2889995.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(一文读懂光储存技术及原理.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

一文读懂光储存技术及原理.docx

1、一文读懂光储存技术及原理一文读懂光储存技术及原理信息资料迅速增长是当今社会的一大特点。有人统计,科技文献数量大约每7年增加1倍,而一般的情报资料则以每2年3年翻一番的速度增加。大量资料的存储、分析、检索和传播,迫切需要高密度、大容量的存储介质和管理系统。1898年荷兰的Valdemar Poulsen发明了世界上第一个磁记录设备:磁线录音机,从此,开始了传统的磁记录应用实践。在随后的一个多世纪里面,出现了多种不同种类的磁记录设备:磁带机,磁芯存储器,磁盘等等。虽然有大量不同的磁存储设备出现,但是磁记录的基础原理仍然是上述的铁磁性材料能够保持外磁场磁化方向的特性。传统的磁记录的写入原理是将随时间

2、变化的电信号转换为在线性或者旋转的铁磁性材料中的磁化强度和方向的空间变化,传统的磁记录读 出原理是将分布于磁性材料中的磁化方向和强度的空间变化,通过线性或者旋转运动,利用磁电转化元件,转换为随时间变化的电信号。但是,随着记录密度的提高(目前的硬盘记录密度已经能够达到 30Gb/cm2),能够获得的感生电流的强度和信噪比已经过小,造成读入设备的误码率已经不能达到要求。计算机和信息产业的发展使越来越多的信息内容以数字化的形式记录、传输和存储,对大容量信息存储技术的研究也随之不断升温 。激光技术的不断成熟,尤其是半导体激光器的成熟应用,使得光存储从最初的微缩照相发展成为快捷、方便、容量巨大的存储技术

3、,各种光ROM纷纷产生。与磁介质存储技术相比,光存储具有寿命长、非接触式读/写、信息位的价格低等优点。光存储的基本原理光存储技术是用激光照射介质,通过激光与介质的相互作用使介质发生物理、化学变化,将信息存储下来的技术。其基本物理原理是:存储介质受到激光照射后,介质的某种性质(如反射率、反射光极化方向等)发生改变,介质性质的不同状态映射为不同的存储数据,存储数据的读出则通过识别存储单元性质的变化来实现。作为光储存方式,已有近百年的发展历史。常见的照相术就是最早的光存储技术。无论是胶片感光灵敏度、分辨率、色彩,还是照相仪器,都取得了长足的进步,不仅能拍摄静止景物,还能通过电影、电视将活动图像记录和

4、再现。然而, 包括全息照相在内的照相术,都属于模拟光存储范畴,它在存储容量、存储密度及传输速率等方面都受到一定限制。随着信息社会的发展,特别是激光的出现和计算机的日益普及,数字光储技术开始兴起,数字光盘的诞生成为存储技术的一项重大突破。迄今为止,绝大部分商品化光盘存储系统中所用的记录介质的记录机理都是热致效应。利用从激光束吸收的能量,作为高度集中的、强大的热源,促使介质局部熔化或蒸发,通常称为烧蚀记录。在实际操作中,一般用电脑来处理信息,因为电脑只能识别二进制数据,所以要在存储介质上面储存数据、音频和视频等信息,首先要将信息转化为二进制数据。现在常见的CD光盘、DVD光盘等光存储介质,与软盘、

5、硬盘相同,都是以二进制数据的形式来存储信息的。 写入信息时,将主机送来的数据经编码后送入光调制器,使激光源输出强度不同的光束,调制后的激光束通过光路系统, 经物镜聚焦然后照射到介质上,存储介质经激光照射后被烧蚀出小凹坑,所以在存储介质上,存在被烧蚀和未烧蚀两种不同的状态,这两种状态对应着两种不同的二进制的数据。聚焦光束人射到光盘上,如果光盘上已经存在记录信息,反射光的特征,例如,光强、光的相位或者光的偏振状态将发生某种变化,通过电子系统处理可以再现原始记录的数据信息,这就是光盘的基本读出过程。具体来说,就是读取信息时,激光扫描介质,在凹坑处由于反射光与入射光相互抵消入射光不返回,而在未烧蚀的无

6、凹坑处,入射光大部分返回。这样,根据光束反射能力的不同,就可以把存储介质上的二进制信息读出,然后再将这些二进制代码转换成为原来的信息。另外,可擦写光盘的存储介质为使光照点的结晶态发生变化,即相变型介质。而磁光存储材料的光盘的存储介质则是产生磁化方向的改变,从而记录或删除信息。光存储的主要特点1、记录密度高、存储容量大。光盘存储系统用激光器作光源。由于激光的相干性好,可以聚焦为直径小于0.001mm的小光斑。用这样的小光斑读写,光盘的面密度可高达107bit/cm2108bit/cm2。一张CD-ROM光盘可存储3亿个汉字。我国花了14年方才出版齐的中国百科全书共1.2108多万字,也就是说,全

7、部的百科全书还装不满一张CD-ROM光盘。2、光盘采用非接触式读写,光学读写头与记录盘片间通常有大约2mm的距离。这种结构带来了一系列优点:首先,由于无接触,没有磨损,所以可靠性高、寿命长,记录的信息不会因为反复读取而产生信息哀减;第二,记录介质上附有透明保护层,因而光盘表面上的灰尘和划痕,均对记录信息影响很小,这不仅提高了光盘的可靠性,同时使光盘保存的条件要求大大降低;第二,焦距的改变可以改变记录层的相对位置,这使得光存储实现多层记录成为可能;第四,光盘片可以方便自由的更换,并仍能保持极高的存储密度。这既给用户带来使用方便,也等于无限制的扩大了系统的存储容量。3、激光是一种高强度光源,聚焦激

8、光光斑具有很高的功率,因而光学记录能达到相当高的速度;4、易于和计算机联机使用,这就显著地扩大了光存储设备的应用领域;5、光盘信息可以方便地复制,这个特点使光盘记录的信息寿命实际上为无限长。同时,简单的压制工艺,使得光存储的位信息价格低廉,为光盘产品的大量推广应用创造了必要的条件。当然,光存储技术也有缺点和不足。光学头无论体积还是质量,都还不能与磁头相比,这影响光盘的寻址速度,从而影响其记录速度。一般地说,光盘读写速度还比磁盘低。而由于光盘的记录密度如此之高,盘片上极小的缺陷也会引起错误。光盘的原生误码率比较高,使得光盘系统必须采用强有力的误码校正措施,从而增加了设备成本。光盘及存储类型光盘类

9、型通常有:只读存储光盘(ROM, Read only memory)、一次写入光盘(WORM, Write once read memory )、可擦重写光盘(Rewrite)、直接重写光盘(Overwrite)。只读存储光盘激光束被聚焦成1um光点,光盘的凹坑一般宽度为0.4um,深度为读出光波长l/4,约为0.11um,螺旋线型的纹迹间距为1.67um。经过调制的激光束以不同的功率密度聚焦在甩有光刻胶的玻璃衬盘上,使光刻胶曝光,之后经过显影、刻蚀、制成主盘(又称母盘,master),再经喷镀、电镀等工序制成副盘(又称印膜,stamper),然后再经过“2P”注塑形成ROM光盘。衬盘甩胶:对

10、玻璃等衬盘进行精密研磨、抛光后进行超声清洗,得到规格统一、表面清洁的衬盘;在此光盘上滴以光刻胶,放入高速离心机中甩胶,以在衬盘表面形成一层均匀的光刻胶膜;取出放入烘箱中进行前烘,以得到与衬底附着良好且致密的光刻胶膜。调制曝光:将膜片置入高精度激光刻录机中,按预定调制信号进行信息写入。显影刻蚀:若为负性光刻胶,不曝光部分脱落,于是信息道出现符合调制信号的信息凹坑,凹坑的形状、深度、及坑间距与携带信息有关。这种携带有调制信息的凹凸信息结构的盘片就是主盘。由于此过程中所用的光刻胶一般为正性,因而所得主盘为正像主盘。喷镀银层:在主盘表面喷镀一层银膜。这层银膜一方面用来提高信息结构的反射率,以便检验主盘

11、的质量,另一方面,还作为下一步电镀镍的电极之一。电镀镍层:在喷镀银的盘片表面用电解的方法镀镍,使得主盘上长出一层厚度符合要求的金属镍膜。将上述盘片经过化学处理,使得镍膜从主盘剥脱,形成一个副盘。上述主盘每一个都可用通过(5)、(6)步骤的重复,制得若干个副像子盘-副盘;而每一副盘又都可以通过(5)、(6)步骤的重复,制得若干个正像子盘。将上述所得正像或副像子盘作为“印膜(stamper)”加工中心孔和外圆后装入“2P”喷塑器中,经进一步的“2P”复制过程来制作批量ROM光盘。总的来讲,只读存储光盘的记录介质是光刻胶,记录方式是用声光调制的氩离子激光器将信息刻录在介质上,然后制成主盘及副盘,再用

12、副盘作为原模,大量复制视频录像盘或数字音像唱片。一次写入光盘一次写入光盘是利用激光光斑在存储介质的微区产生不可逆的物理化学变化进行信息记录的盘片,其记录方式主要有以下几种:烧蚀型:存储介质可以是金属、半导体合金、金属氧化物或有机染料。利用介质的热效应,是介质的微区熔化、蒸发,以形成信息坑孔。起泡型:存储介质由聚合物-高熔点金属两层薄膜组成。激光照射使聚合物分解排出气体,两层间形成的气泡使上层薄膜隆起,与周围形成反射率的差异而实现信息的记录。熔绒型:存储介质用离子刻蚀的硅,表面呈现绒状结构,激光光斑使照射部分的绒面熔成镜面,实现反差记录。合金化型:用Pt-Si、Rh-Si或Au-Si制成双层结构

13、,激光加热的微区熔成合金,形成反差记录。相变型:存储介质多用硫属化合物或金属合金制成薄膜,利用金属的热效应和光效应使被照微区发生非晶到晶相的相变。可擦重写光盘可擦重写光盘从记录介质写、读、擦的机理来讲,主要分为两大类:相变光盘:这类光盘采用多元半导体元素配制成的结构相变材料作为记录介质膜,利用激光与介质膜相互作用时,激光的热和光效应导致介质在晶态与玻璃态之间的可逆相变来实现反复写、擦要求,可分为热致相变光盘和光致相变光盘。磁光盘:这类光盘采用稀土-过渡金属合金制成的磁性相变介质作为记录薄膜,这种薄膜介质具有垂直于薄膜表面的易磁化轴,利用光致退磁效应以及偏置磁场作用下磁化强度取向的正或负来区别二

14、进制中的“0”或“1”。可擦重写相变光盘的原理RW相变光盘是利用记录介质在两个稳定态之间的可逆相结构变化来实现反复的写和擦。常见的相结构变化有下列几种:1、晶态晶态之间的可逆相变,这种相变反衬度太小,没有使用价值。2、非晶态非晶态之间的可逆相变,这种相变的反衬度亦太小,没有实用价值。3、发生玻璃态晶态之间的可逆相变,这种相变有实用价值。存储原理与过程:近红外波段的激光作用在介质上,能加剧介质结构中原子、分子的振动,从而加速相变的进行。因此近红外激光对介质的作用以热效应为主。信息的记录:对应介质从晶态C向玻璃态G的转变。选用功率密度高、脉宽为几十至几百钠秒的激光脉冲,使光斑微区因介质温度刹那间超

15、过熔点Tm而进入液相,再经过液相快淬完成达到玻璃态的相转变。信息的读出:用低功率密度、短脉冲的激光扫描信息道,从反射率的大小辨别写入的信息。 一般介质处在玻璃态(即写入态)时反射率小,处在晶态(擦除态)时反射率大,在读出的过程中,介质的相结构保持不变。信息的擦除:对应介质从玻璃态G向晶态C的转变。选用中等功率密度、较宽脉冲的激光,使光斑微区因介质温度升至接近Tm处,再经过成核-生长完成晶化。在此过程中,光诱导缺陷中心可以成为新的成核中心,因此,由于激光作用使成核速率、生长速度大大增加,从而导致激光热晶化比单热晶化速率高。光信息存储新技术信息技术的飞速发展,对海量信息存储的需求迅猛增长。然而,正

16、在全世界兴起的信息高速公路网和起级计算机小型化发展中,信息存储系统仍是一个相对薄弱的关键性环节。光存储目前达到的存储密度和数据传输速率还远远满足不了飞速发展的信息科学技术的要求为了提高存储密度和数据传输速率,光存储正在由长波向短波、低维向高维(即由平面向立体)、远场向近场、光热效应向光子效应、逐点存储向并行存储发展。三维体存储技术三维体存储是实现超高密度信息存储的重要途径 , 研究领域主要集中在体全息存储和光子三维存储两个方面。体全息存储体全息存储是20世纪60年代随着光全息技术的发展而出现的一种大容量高存储密度的存储方式。随着计算机产业的迅速发展,也由于在光电器件和全息存储材料领域的研究取得了突破,使得人们在全息存储领域获得了巨大的进展,从 而也使全息存储成为超高密度光存储领域的研究热点。一般光学体全息数据存储机理为:待存储的数据(数

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1