ImageVerifierCode 换一换
格式:DOCX , 页数:15 ,大小:362.77KB ,
资源ID:287530      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/287530.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(英文文献科技类原文及翻译电子电气自动化通信1.docx)为本站会员(b****0)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

英文文献科技类原文及翻译电子电气自动化通信1.docx

1、英文文献科技类原文及翻译电子电气自动化通信1外文文献原文On the deployment of VoIP in Ethernet networks: methodology and case studyAbstractDeploying IP telephony or voice over IP (VoIP) is a major and challenging task for data network researchers and designers. This paper outlines guidelines and a step-by-step methodology on ho

2、w VoIP can be deployed successfully. The methodology can be used to assess the support and readiness of an existing network. Prior to the purchase and deployment of VoIP equipment, the methodology predicts the number of VoIP calls that can be sustained by an existing network while satisfying QoS req

3、uirements of all network services and leaving adequate capacity for future growth. As a case study, we apply the methodology steps on a typical network of a small enterprise. We utilize both analysis and simulation to investigate throughput and delay bounds. Our analysis is based on queuing theory,

4、and OPNET is used for simulation. Results obtained from analysis and simulation are in line and give a close match. In addition, the paper discusses many design and engineering issues. These issues include characteristics of VoIP traffic and QoS requirements, VoIP flow and call distribution, definin

5、g future growth capacity, and measurement and impact of background traffic. Keywords: Network Design,Network Management,VoIP,Performance Evaluation,Analysis,Simulation,OPNET 1 IntroductionThese days a massive deployment of VoIP is taking place over data networks. Most of these networks are Ethernet

6、based and running IP protocol. Many network managers are finding it very attractive and cost effective to merge and unify voice and data networks into one. It is easier to run, manage, and maintain. However, one has to keep in mind that IP networks are best-effort networks that were designed for non

7、-real time applications. On the other hand, VoIP requires timely packet delivery with low latency, jitter, packet loss, and sufficient bandwidth. To achieve this goal, an efficient deployment of VoIP must ensure these real-time traffic requirements can be guaranteed over new or existing IP networks.

8、 When deploying a new network service such as VoIP over existing network, many network architects, managers, planners, designers, and engineers are faced with common strategic, and sometimes challenging, questions. What are the QoS requirements for VoIP? How will the new VoIP load impact the QoS for

9、 currently running network services and applications? Will my existing network support VoIP and satisfy the standardized QoS requirements? If so, how many VoIP calls can the network support before upgrading prematurely any part of the existing network hardware? These challenging questions have led t

10、o the development of some commercial tools for testing the performance of multimedia applications in data networks. A list of the available commercial tools that support VoIP is listed in 1,2. For the most part, these tools use two common approaches in assessing the deployment of VoIP into the exist

11、ing network. One approach is based on first performing network measurements and then predicting the network readiness for supporting VoIP. The prediction of the network readiness is based on assessing the health of network elements. The second approach is based on injecting real VoIP traffic into ex

12、isting network and measuring the resulting delay, jitter, and loss. Other than the cost associated with the commercial tools, none of the commercial tools offer a comprehensive approach for successful VoIP deployment. In particular, none gives any prediction for the total number of calls that can be

13、 supported by the network taking into account important design and engineering factors. These factors include VoIP flow and call distribution, future growth capacity, performance thresholds, impact of VoIP on existing network services and applications, and impact background traffic on VoIP. This pap

14、er attempts to address those important factors and layout a comprehensive methodology for a successful deployment of any multimedia application such as VoIP and video conferencing. However, the paper focuses on VoIP as the new service of interest to be deployed. The paper also contains many useful e

15、ngineering and design guidelines, and discusses many practical issues pertaining to the deployment of VoIP. These issues include characteristics of VoIP traffic and QoS requirements, VoIP flow and call distribution, defining future growth capacity, and measurement and impact of background traffic. A

16、s a case study, we illustrate how our approach and guidelines can be applied to a typical network of a small enterprise. The rest of the paper is organized as follows. Section 2 presents a typical network topology of a small enterprise to be used as a case study for deploying VoIP. Section 3 outlines practical eight-step methodology to deploy successfully VoIP in data networks. Each step is described in considerable detail. Section 4 describes important design and engineering d

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1