ImageVerifierCode 换一换
格式:DOCX , 页数:8 ,大小:137.85KB ,
资源ID:28517068      下载积分:3 金币
快捷下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

加入VIP,免费下载
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.bdocx.com/down/28517068.html】到电脑端继续下载(重复下载不扣费)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

下载须知

1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。
2: 试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
3: 文件的所有权益归上传用户所有。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 本站仅提供交流平台,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

版权提示 | 免责声明

本文(临界力和欧拉公式定理.docx)为本站会员(b****5)主动上传,冰豆网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知冰豆网(发送邮件至service@bdocx.com或直接QQ联系客服),我们立即给予删除!

临界力和欧拉公式定理.docx

1、临界力和欧拉公式定理第二节 临界力和欧拉公式11p浏览字体设置:-t+10p 12p 14p 16p t t t t放入我的网络收藏夹 第二节 临界力和欧拉公式杆件所受压力逐渐增加到某个限度时, 压杆将由稳定状态转化为不稳定状态。 这个压力的限度称为临界力 Pcr 。它是压杆保持直线稳定形状时所能承受的最小压力。为了计算压杆的稳定性, 就要确定临界力的大小。 通过实验和理论推导, 压杆临界力与各个因素有关:(1) 压杆的材料, Pcr 与材料的弹性模量 E 成正比,即(2 )压杆横截面的形状和尺寸, Pcr 与压杆横截面的轴惯性矩 J成正比,即(3) 压杆的长度, Pcr 与长度的平方 l2

2、成反比,即(4) 压杆两端的支座形式有关,用一个系数表示,称为支座系数 ,列于 表 1-10表 1-10 压杆长度系数杆端约束情况两端固定一端固定一端铰支两端铰支一端固定一端自由为计算方便,写成细长中心受压直杆临界力的欧拉公式对于两端铰支的细长中心受压直杆,当其在临界力 Pcr ,的作用下处于不稳定直线形式的平衡状态,若其材料仍处于理想的线弹性范围内,从力学的观点讲,这类稳定问题 称为线弹性稳定问题。这是压杆稳定问题中最简单的一种。由临界力的定义可知,中心 受压直杆只有在临界力的作用下才有可能在微弯形态下维持平衡 (见图 7-3) 。现假设压杆轴线在临界力 Pcr作用下呈图 7-3(b) 所示

3、的曲线形态。 在图示的坐标系下, 压力 Pcr取 正值,位移忙 V=f(x) 以沿 y 轴正方向为正,弯矩的正负号规定同 2.3 节。压杆任一 x 截面上弯矩为将式 (7-1a) 代入挠曲线的近似微分方程 (6-8h) 中,并利用压杆支承处的边界最小压力 。力实际也就是使压杆维持微弯平衡的将式(7-1a)代入公式 (6-8h)可得其中 I 为压杆横截面的最小形心主惯性矩。令公式 (7-1b) 可改写为如下形式的二阶常系数线性微分方程其通解为式中 A、B 、k三个待定常数可利用该挠曲线的三个边界条件来确定。由 x=0 , v=0 的边界条件可得因此式 (7- 1e)可化为利用杆的另一边界条件 x

4、=L, v=0代入式(7-1f) 可得这就要求 A=0 或 sink L =0 。若A=0 ,则由式(7-1f) 可得v =0 ,即杆的挠度为零,这和假 定杆在临界力 Pcr 作用下维持微弯状态的平衡的前提相矛盾。 因此,只可能 这就是压杆有可能在微弯形态下维持平衡的必备条件。 由此还可进一步求出压杆的临界力 Pcr由式 (7-1g) 可知将此关系代入式 (7-lc) 得所以由于使杆维持微弯平衡的最小压力才是临界力,故在公式(7-1i) 中应取 n=l 。于是得欧拉(L.Euler) 在 1774 年推得的公式,常称欧拉公式,即由于杆的两端系球铰, 它对端截面的转动约束在各方向上都是相同的,而

5、杆的弯曲变形总是发生在抗弯能力最弱的主惯性平面内,故上式中的,应是横截面的最小形心主惯性矩Imin 。L另外,当 x= 2 时,令 v= 代入式 (7-1f) ,考虑到当n=l 时, k = L 故式 (7-1f) 可化为这说明两端铰支压杆的挠曲线是一个半波正弦曲线。式(7-2b) 中 的具体值无法确定,似乎压杆在临界压力作用下于微弯状态时的平衡是随遇的,可取任意值。之所以这样,是因为推导则挠曲线中点的挠过程中采用了挠曲线近似微分方程的缘故。 若采用挠曲线的精确微分方程, 度 与轴向压力 P 存在一一对应关系 ( 见图 7-2(b) 。不同杆端约束 -F 细长压杆临界力的 欧拉公式压杆的长度系

6、数在工程中,除了两端铰支的压杆外,还会遇到其他不同形式的杆端约束的情况。对 于这些情况下压杆临界力的公式,可用与上节相同的方法来推导。当然这里我们仍然强调, 压杆在临界力的作用下于微弯状态时仍处于弹性范围内。 压杆的临界力也可通过变形类比的 方法得出。以一端固定、一端自由的细长压杆为例,其在微弯状态的平衡如图 7-4(b) 所示。 将它和两端铰支杆在微弯形态下的挠曲线 (图 7-4(a) 相比较, 可见它的变形曲线和两端铰支杆的变形曲线的上半部是一样的。设想将图 7-4(b) 所示的曲线对称的延长一倍,所得的曲 线将完全和图 7-4(a) 所示的曲线一样。在弹性范围内,相同的变形对应相同的力,

7、故一端 固定,一端自由,长为 L 的压杆的临界力就等于两端铰支但长度为 2L的压杆的临界力,故此种压杆的临界力应为对于两端固定的细长压杆, 其失稳后挠曲线如图 7-4(c) 所示。 在距两端为上L 4 处,挠曲线有拐点,此处的弯矩为零,因而可把该处视为一个铰,这样就可把其中长为L 2 的中间部分当作是两端铰支的杆。因此,由前面相似的论证可知,两端固定,长为L 的压杆的临界力就等于两端铰支但长度为 L 2 的压杆的临界力,故此种压杆的临界力应为同样,对一端固定,一端铰支的细长压杆,其失稳后挠曲线如图7-4 。对于这种情况可近似地把长为 0.7L 他的那一部分杆当作两端铰支杆,故综上所述, 以上各

8、式可统一写成这就是细长压杆欧拉公式的普遍形式。 式中 L 是把不同支座约束条件下的压杆折算成和其 临界力相当的两端铰支杆时所用的一个折算长度,称为相当长度。称为长度系数,图 7-4 中列出了各种情况下压杆的长度系数。以上几种约束只是几种典型的情况, 实际问题中压杆的支座还可有其他形式。 例如杆端与其 他弹性构件固接的压杆, 这种情况相当于压杆的端面是介于固定支座和铰支座之间的弹性支 座。另外, 作用在压杆上的荷载也可以有不同的形式。 例如压力可以是沿压杆轴线分布而不是集中作用在杆的两端。所有这些因素对压杆临界力的影响,可以用不同的长度系数 值 来反映。在有关的设计规范中对各种压杆 值的选取均有

9、具体的规定。例题 7-1 例题 7 1 图(a)所示为两端固定, 但上端可有水平位移的等截面细长中心受压直 杆,其长度为 l ,抗弯刚度 EL 。试推导其临界力 Pcr ,的欧拉公式,并求出挠曲线方程。解:在临界力 Pcr 作用下,压杆可在图 (b)所示的微弯状态下维持平衡。 此时杆上端 B 处有支反 力偶矩 m ,转向如图示。杆任意 x 横截面上的弯矩为 此时,压杆挠曲线近似微分方程为引入参数可得由下端 A 处的边界条件 x=0, v=0, v =0 可得于是由式 (7-5a) 有再由上端 B 处的边界条件 x=l ,v= ,v =0 可得将 kl 代入式 (7-5d) 得现在讨论此挠曲线的拐点。 为此,取二阶导数当M l 0故杆的中点 C 即为挠曲线的拐点, 亦即该点处的弯矩 2 又由式 (7-5f) 可知,该点处挠 度为 2 。

copyright@ 2008-2022 冰豆网网站版权所有

经营许可证编号:鄂ICP备2022015515号-1